Question

In this experiment, in order to determine the order of the bleaching reaction with respect to...

In this experiment, in order to determine the order of the bleaching reaction with respect to

NaOCl, you will make a plot of a pseudo-rate constant k´ vs. [NaOCl].

a) Write the mathematical expression for how k´ depends upon [NaOCl] (Hint: look at the

last paragraph on p. 2.)

b) Make three sketches showing what this plot should look like if the reaction were zero

order, first order, or second order with respect to NaOCl.

Homework Answers

Answer #1

In this experiment, in order to determine the order of the bleaching reaction with respect to

NaOCl, you will make a plot of a pseudo-rate constant k´ vs. [NaOCl].

a) Write the mathematical expression for how k´ depends upon [NaOCl] (Hint: look at the

last paragraph on p. 2.)

) Write the mathematical expression for how k´ depends upon [NaOCl] (Hint: look at the

last paragraph on p. 2.)

b) Make three sketches showing what this plot should look like if the reaction were zero

order, first order, or second order with respect to NaOCl.

here page no 2 is miisng hence this is in correct answer.............

) Write the mathematical expression for how k´ depends upon [NaOCl] (Hint: look at the

last paragraph on p. 2.)

..

plese provide correct dated with correct answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The reaction: A -> B+C is known to be second order with respect to A and...
The reaction: A -> B+C is known to be second order with respect to A and to have a rate constant of 0.225 M-1s-1 at 277 K. An experiment was run at this temperature where [A]o = 0.387 M. Calculate the concentration of B after 0.119 seconds has elapsed.
The reaction: A → B + C is known to be second order with respect to...
The reaction: A → B + C is known to be second order with respect to A and to have a rate constant of 0.00255 M-1 s-1 at 285 K. It is also known that ΔGorxn for this reaction is -2.13 kJ. An experiment was run at this temperature where only reactants were present ([A]o = 0.331 M). Calculate ΔGnonstandard after 14.1 seconds has elapsed.
This reaction: A--->B+C is known to be second order with respect to A and to have...
This reaction: A--->B+C is known to be second order with respect to A and to have a rate constant of 0.243M-1s-1 at 297K. An experiment was run at this temperature where [A]o=0.391M. Calculate the concentration of B after 0.161s have elapsed.
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. 1.) The reactant concentration in a zero-order reaction was 6.00×10−2M after 165 s and 3.50×10−2Mafter 385 s . What is the rate constant for this reaction? 2.)What was the initial reactant concentration for the reaction described in Part A? 3.)The reactant concentration in a first-order reaction was 6.70×10−2 M after 40.0 s and 2.50×10−3Mafter 95.0 s ....
The reaction (CH3)3CBr + OH- ------->(CH3)3COH + Br- In a certain solvent is first order with...
The reaction (CH3)3CBr + OH- ------->(CH3)3COH + Br- In a certain solvent is first order with respect to (CH3)3CBr and zero order with respect to OH-. In several experiments, the rate constant k was determined at different temperatures. A plot of ln(k) versus 1/T was constructed resulting in a straight line with a slope value of -1.10 X10^4 K and y-intercept of 33.5. Assume k as units of s-1. a. Determine the activation energy for this reaction b. Determine the...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. Order Integrated Rate Law Graph Slope 0 [A]=−kt+[A]0 [A] vs. t −k 1 ln[A]=−kt+ln[A]0 ln[A] vs. t −k 2 1[A]= kt+1[A]0 1[A] vs. t k ------------ Part A The reactant concentration in a zero-order reaction was 5.00×10−2M after 110 s and 4.00×10−2M after 375 s . What is the rate constant for this reaction? ---------- Part B...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. Order Integrated Rate Law Graph Slope 0 [A]=−kt+[A]0 [A] vs. t −k 1 ln[A]=−kt+ln[A]0 ln[A] vs. t −k 2 1[A]= kt+1[A]0 1[A] vs. t k Part A The reactant concentration in a zero-order reaction was 8.00×10−2M after 200 s and 2.50×10−2Mafter 390 s . What is the rate constant for this reaction? Express your answer with the...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. Order Integrated Rate Law Graph Slope 0 [A]=−kt+[A]0 [A] vs. t −k 1 ln[A]=−kt+ln[A]0 ln[A] vs. t −k 2 1[A]= kt+1[A]0 1[A] vs. t k Part A The reactant concentration in a zero-order reaction was 7.00×10−2M after 135 s and 2.50×10−2M after 315 s . What is the rate constant for this reaction? Express your answer with...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. Order Integrated Rate Law Graph Slope 0 [A]=−kt+[A]0 [A] vs. t −k 1 ln[A]=−kt+ln[A]0 ln[A] vs. t −k 2 1[A]= kt+1[A]0 1[A] vs. t k Part A The reactant concentration in a zero-order reaction was 5.00×10−2M after 200 s and 2.50×10−2M after 310 s . What is the rate constant for this reaction? Express your answer with...
3)The thermal decomposition of acetaldehyde is a second order reaction CH3CHO-> CH4+CO from the data shown...
3)The thermal decomposition of acetaldehyde is a second order reaction CH3CHO-> CH4+CO from the data shown below, calculate the average rate of change in the pressure of acetaldehyde between 42 and 105 s. include the correct sign and units. ( this is analogous to finding the average rate of change in concentration, just substitute pressure for concentration.) 4) for the reaction shown below which one of the following statements can you rightly assume? 2H2S (g) +O2 (g) ->2S (s)+ 2H2O...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT