Question

1- Liquid flow in three pipe with different diameter A) They have a same flow B)...

1- Liquid flow in three pipe with different diameter

A) They have a same flow

B) Different heat loss?

C) Different head loss?

D) None Correct ? what they have in common & what are the differences in pipe

2- batch reactor is best used for ?

A) Methanol Production

B) Acetone production

C) Propylene production

D) asprin production

Homework Answers

Answer #1

Ans 1 : B) Different heat loss

When the fluid is flowing from a pipe different factors account for the loss of heat from the liquid.

Here if the pipe material is same so the thermal conductivity of the pipe will be same for all. The diameter is different , so the surface area available for the heat loss will be different for all of them.

More the surafce area , more the heat loss. Since the length and radius of the pipe in which the liquids are flowing are different , so amount of heat loss will vary.

The temperature of air outside the pipe also governs the amount of heat loss from these liquids.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Equal masses of two different liquids have the same temperature of 22.1 °C. Liquid A has...
Equal masses of two different liquids have the same temperature of 22.1 °C. Liquid A has a freezing point of -63.0 °C and a specific heat capacity of 1790 J/(kg C°). Liquid B has a freezing point of -82.9 °C and a specific heat capacity of 2580 J/(kg C°). The same amount of heat must be removed from each liquid in order to freeze it into a solid at its respective freezing point. Determine the difference Lf,A - Lf,B between...
Hydraulic oil is flowing through a 80 mm diameter horizontal pipe with a flow rate of...
Hydraulic oil is flowing through a 80 mm diameter horizontal pipe with a flow rate of 1.5 litres per -3 second. At a certain point the diameter changes to 5 cm. Assume the oil’s density is 870 kg.m . (a) Calculate the velocity in SI units through the wider diameter section of the pipe. (b) Calculate the velocity in SI units through the narrower section of the pipe. (c) What is the pressure difference between the larger and smaller sections...
1.) A liquid of density 1390 km/m^3 flows steadily through a pipe of varying diameter and...
1.) A liquid of density 1390 km/m^3 flows steadily through a pipe of varying diameter and height. At Location 1 along the pipe, the flow speed is 9.31 m/s and the pipe d1 diameter is 10.3cm . At Location 2, the pipe diameter d2 is 17.5 cm . At Location 1, the pipe is triangle y= 9.31m higher than it is at Location 2. Ignoring viscosity, calculate the difference between the fluid pressure at Location 2 and the fluid pressure...
(1). (5%) If one wants to increase the height-to-diameter ratio of a tray tower for a...
(1). (5%) If one wants to increase the height-to-diameter ratio of a tray tower for a given actual number of trays, one should consider to change__________________. (2). (5%) For a packed tower, the height-to-diameter ratio is determined by ____________ and ____________. (3). (5%) For efficient stripping of ammonia from a wastewater stream, the best type of mass transfer equipment should be a _______________. (4). (5%). For a batch distillation tray tower, one can maintain a constant distillate product concentration via...
City water will be cooled in a heat exchanger by sea water entering at 15°C. The...
City water will be cooled in a heat exchanger by sea water entering at 15°C. The outlet temperature of the sea water is 20°C. City water will be recirculated to reduce water consumption. The suction line of the pump has an inner diameter of 154 mm, is 22 m long, and has two 90° bends and a hinged check valve. The pipe from the pump to the heat exchanger has an inner diameter of 127 mm, is 140 m long,...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at its normal boiling point of -452.074 degrees Fahrenheit. At this temperature Helium's heat of vaporization is 20.4 kJ/kg. The walls of the helium container are 1.2 cm thick and have a thermal conductivity of 13.889 W/(m K). The helium container is surrounded by liquid nitrogen at a temperature of -327.64 degrees Fahrenheit. A. What is the conductive surface area of the metal cylinder? B....
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at its normal boiling point of -452.074 degree Fahrenheit. At this temperature Helium's heat of vaporization is 20.4 kJ/kg. The walls of the helium container are 1.2 cm thick and have a thermal conductivity of 13.889 W/(m K). The helium container is surrounded by liquid nitrogen at a temperature of -327.64 degrees Fahrenheit. a) What is the conductive surface area of the metal cylinder? b)...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at its normal boiling point of -452.074 degree Fahrenheit. At this temperature Helium's heat of vaporization is 20.4 kJ/kg. The walls of the helium container are 1.2 cm thick and have a thermal conductivity of 13.889 W/(m K). The helium container is surrounded by liquid nitrogen at a temperature of -327.64 degrees Fahrenheit. a) What is the conductive surface area of the metal cylinder? b)...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at its normal boiling point of -452.074 degree Fahrenheit. At this temperature Helium's heat of vaporization is 20.4 kJ/kg. The walls of the helium container are 1.2 cm thick and have a thermal conductivity of 13.889 W/(m K). The helium container is surrounded by liquid nitrogen at a temperature of -327.64 degrees Fahrenheit. a) What is the conductive surface area of the metal cylinder? b)...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at its normal boiling point of -452.074 degree Fahrenheit. At this temperature Helium's heat of vaporization is 20.4 kJ/kg. The walls of the helium container are 1.2 cm thick and have a thermal conductivity of 13.889 W/(m K). The helium container is surrounded by liquid nitrogen at a temperature of -327.64 degrees Fahrenheit. a) What is the conductive surface area of the metal cylinder? b)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT