Question

Equal masses of two different liquids have the same temperature of 22.1 °C. Liquid A has...

Equal masses of two different liquids have the same temperature of 22.1 °C. Liquid A has a freezing point of -63.0 °C and a specific heat capacity of 1790 J/(kg C°). Liquid B has a freezing point of -82.9 °C and a specific heat capacity of 2580 J/(kg C°). The same amount of heat must be removed from each liquid in order to freeze it into a solid at its respective freezing point. Determine the difference Lf,A - Lf,B between the latent heats of fusion for these liquids.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An unknown material has a normal melting/freezing point of -29.1 °C, and the liquid phase has...
An unknown material has a normal melting/freezing point of -29.1 °C, and the liquid phase has a specific heat capacity of 178 J/(kg C°). One-tenth of a kilogram of the solid at -29.1 °C is put into a 0.132-kg aluminum calorimeter cup that contains 0.165 kg of glycerin. The temperature of the cup and the glycerin is initially 26.9 °C. All the unknown material melts, and the final temperature at equilibrium is 18.0 °C. The calorimeter neither loses energy to...
8.33 kg of steam at temperature of 150 ∘C has 2.23×107 J of heat removed from...
8.33 kg of steam at temperature of 150 ∘C has 2.23×107 J of heat removed from it. Determine the final temperature and phase of the result once the heat has been removed if the heat is removed at constant pressure during the gas phase. For this problem, use the specific heat (at constant pressure) for water as 1850 J/kg∘C , the latent heat of vaporization as 2.256×106 J/kg , the specific heat of liquid water as 4186 J/kg∘C , the...
8.33 kg of steam at temperature of 150 ∘C has 2.23×107 J of heat removed from...
8.33 kg of steam at temperature of 150 ∘C has 2.23×107 J of heat removed from it. Determine the final temperature and phase of the result once the heat has been removed if the heat is removed at constant pressure during the gas phase. For this problem, use the specific heat (at constant pressure) for water as 1850 J/kg∘C , the latent heat of vaporization as 2.256×106 J/kg , the specific heat of liquid water as 4186 J/kg∘C , the...
⦁   Two identical containers A and B, filled with equal masses of 2 different liquids, initially...
⦁   Two identical containers A and B, filled with equal masses of 2 different liquids, initially at 20°C, are heated on a hot plate and both receive the same amount of heat. As a result, the temperature of liquid A is raised to 40°C and that of liquid B is raised to 80°C. If the liquids are now poured into a third, larger container and mixed, would their final temperature be lower, higher, or exactly equal to 60˚C? Explain your...
ethylene glycol is a colorless liquid at room temperature with the following properties: melting point is...
ethylene glycol is a colorless liquid at room temperature with the following properties: melting point is -12.9°C. boiling point 197.3°C heat of fusion is 159.50 J/g heat of vaporization is 1056.87 J/g heat capacity of the liquid is 2.41 J/g°C heat capacity of the gas 1.25 J/g°C If you had a sample of ethylene glycol at -10°C, what state would it be in (solid, liquid, or gas) if you decreased the temperature from -10°C to -20°C what phase change would...
At 0°C the latent heat of the ice<-->liquid transition is 3.34 × 105 J/kg. Clean water...
At 0°C the latent heat of the ice<-->liquid transition is 3.34 × 105 J/kg. Clean water can be cooled a few degrees below 0°C without freezing on an ordinary time-scale, even though ice would have lower G. This non-equilibrium liquid state typically remains until some disturbance (e.g. a bubble) triggers the freezing. 1) What is the entropy difference between 4 kg of liquid water and 4 kg of ice at 0°C? 2) The specific heat of liquid water is cpw=...
A chunk of frozen mercury (the element Hg, not the planet) in an isolated calorimeter has...
A chunk of frozen mercury (the element Hg, not the planet) in an isolated calorimeter has a little warm water splashed on it to warm it up. 1.25 kg of mercury begins the problem at a temperature of -95 C, and is combined with 0.065 kg of water at 15 C. No heat flows to or from the environment. What is the equilibrium state of the system, in terms of temperature, mass of water, mass of ice, mass of solid...
ethylene glycol is a colorless liquid at room temperature with the following properties melting point is...
ethylene glycol is a colorless liquid at room temperature with the following properties melting point is -12.9°C. boiling point 197.3°C heat of fusion is 159.50 J/g, heat of vaporization is 1056.87 J/g heat capacity of the liquid is 2.41 J/g°C, heat capacity of the gas 1.25 J/g°C a) If you had a sample of ethylene glycol at -10°C, what state would it be in (solid, liquid, or gas) b) if you decreased the temperature from -10°C to -20°C what phase...
You have a crate of 40,0 kg of shrimp at 8,0°C. You want to freeze the...
You have a crate of 40,0 kg of shrimp at 8,0°C. You want to freeze the shrimp to a temperature of -18,0°C. How much warmth must be removed from the shrimp to make this happen? The following is given: The freezingpoint for the shrimp is -2,2°C. The melting ethalpy for the shrimp is 277 kJ/kg. The spesific heat capacity for the shrimp before they freeze is 3,62 kJ/kg.°C. The shrimps specific heat capacity after the freezing point is 1,89 kJ/kg.°C.
A cup of warm water (0.5 kg at 25*C) is poured into a large vat of...
A cup of warm water (0.5 kg at 25*C) is poured into a large vat of liquid nitrogen at 77K. The mixture is thermally insulated from the surrounding room. The following table of data may be relevant for this problem (all atmospheric pressure): Nitrogen Water Freezing Point(K) Boiling Point (K) 63 77 273 373 Specific Heat Capacity (J/kg.K) 1040 4186(water) 2108(ice) Latent Heat of Fusion(KJ/kg) Latent Heat of Vaporization (kJ/kg) 25.7 200 333 2260 (A) What will the final temperature...