Question

For this homework question do not calculate anything for the individual devices (turbine, boiler, etc.). Treat...

For this homework question do not calculate anything for the individual devices (turbine, boiler, etc.). Treat the entire cycle as a “black box” and use the results for thermal efficiency of a Carnot cycle as presented in class or found in Equation 5.1 and 5.6. This cycle operates between 200 deg. C (boiler) and 10 kPa (condenser). Determine the thermal efficiency of the cycle if it is a Carnot cycle. (Be sure to use the absolute temperature in equation 5.6!) If the Carnot cycle produces 2500 kW of power (work output), determine the required rate of high-temperature heat input and required rate of low-temperature heat output.

Homework Answers

Answer #1

Efficiency for a carnot cycle = 1- (Tc/Th) where Tc & Th are cold and hot temperatures in K

now, Th = bolier temeprature = 200DegC = 200+273 = 473 K;

since 10kPa is the condenser pressure, we can calcultae the Tc (saturation temperature of water at 10 kPa) = 45.8 DegC = 45.8+273 = 318.8 K

efficiency = 1-318.8/473 = 0.32 or 32%

net work = 2500 kW  

we know that for carnot cycle W = Qh-Qc where Qh = high temperature heat input & Qc = low temperature heat input

for carnot cycle we know that Qh/Th = Qc/Tc

thus Qh/473 = Qc/318.8 or Qh = 1.48Qc

thus Qh-Qc = W = 1.48Qc-Qc = 2500 or Qc = 5208.3 kW

Qh = 1.48Qc = 1.48*5208.3 = 7708.3

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Increasing the temperature of the heat addition (T subscript H) in any heat engine cycle, with...
Increasing the temperature of the heat addition (T subscript H) in any heat engine cycle, with keeping all other parameters unchanged: A. None of the answers. B. Decreases the heat added at high temperature. C. Increases the thermal efficiency of the cycle. D. Decreases the thermal efficiency of the cycle. 1 points    QUESTION 2 The maximum thermal efficiency of the Rankine cycle power plant is achieved when: A. it works on Carnot heat engine cycle. B. the pump work...
A steam Rankine cycle operates between the pressure limits of 1500 psia in the boiler and...
A steam Rankine cycle operates between the pressure limits of 1500 psia in the boiler and 6 psia in the condenser. The turbine inlet temperature is 800°F. The turbine isentropic efficiency is 90 percent, the pump losses are negligible, and the cycle is sized to produce 2500 kW of power. How much error is caused in the thermal efficiency if the power required by the pump were completely neglected? Use steam tables. The error caused in the thermal efficiency if...
Reconsider the top-secret military power supply for artic environments that you worked in a previous homework....
Reconsider the top-secret military power supply for artic environments that you worked in a previous homework. Previously, you modeled it as a Carnot cycle; now you will use the more realistic Rankine cycle. The boiler operates at 1000 kPa with a maximum temperature of 30°C. The condenser is isobaric and operates at -5°C. a. Calculate the vapor quality leaving the turbine and the specific enthalpy exiting the turbine (in kJ/kg) b. Determine the specific-work produced by the Rankine cycle turbine...
Consider a steam power plant which operates on the Rankine cycle. The pressures in the boiler...
Consider a steam power plant which operates on the Rankine cycle. The pressures in the boiler and the condenser are 5000 kPa and 40 kPa, respectively. The temperatures at the inlet of the turbine and at the inlet of the pump are 500oC and 70oC, respectively. The isentropic efficiency of the turbine is 94 percent, pressure and pump losses are negligible. If the mass flow rate of steam is 10 kg/s. Determine (a) the heat transfer rate in the boiler,...
We have waste incinerator that converts waste fuel into work. The maximum temperature in the boiler...
We have waste incinerator that converts waste fuel into work. The maximum temperature in the boiler is 400oC, the turbine has 100% saturated vapor as the exhaust, and the condenser operates at 75 kPa using steam as the working fluid. Assume the work done by the pump is negligible and the turbine is adiabatic and ideal Assuming a Rankine cycle, a) Sketch your cycle on a T-S diagram with appropriate labels. Label the entrance of the condenser as 1, the...
A power plant using an ideal Rankine power generation cycle operates at an efficiency of 55%...
A power plant using an ideal Rankine power generation cycle operates at an efficiency of 55% with a flowrate of steam of 2 kg/s.  Heat is supplied to the boiler of 2500 kJ/kg. The pump takes in saturated liquid water at 100 kPa and has an exit pressure of 10 MPa.  Determine: the exit temperature of the pump (oC)  (3 pts) the work of the turbine (kW) (3 pts) the heat exhausted from the condenser (kJ/s) (3 pts)
Steam leaves the boiler of a 100 MW Rankine cycle power plant at 400°C and 3.5MPa....
Steam leaves the boiler of a 100 MW Rankine cycle power plant at 400°C and 3.5MPa. The Turbine has an isentropic efficiency of 85% and exhausts at 15 kPa. In the condenser, the water is subcooled to 38°C by lake water at 13°C. The pump isentropic efficiency is 75%. a) Draw and label the T-s diagram for this cycle b) Determine the cycle’s thermal efficiency c) Determine the mass flow rate of the steam in the boiler (kg/h) d) Determine...
1. You will learn much about heat engine cycles in thermo II (if you take it),...
1. You will learn much about heat engine cycles in thermo II (if you take it), but you already have the basic skills needed to perform a rst law analysis of a simple vapor power cycle. This cycle has four basic components: steam turbine, condenser, liquid pump, and boiler, and four as- sociated processes. A speci c case of this cycle has water, in the form of a saturated vapor at 40 kPa, exiting from the turbine and entering the...
Water is the working fluid in an ideal Rankine cycle. Steam enters the turbine at 1400...
Water is the working fluid in an ideal Rankine cycle. Steam enters the turbine at 1400 lbf/in2 and 1000°F. The condenser pressure is 2 lbf/in.2 The net power output of the cycle is 350 MW. Cooling water experiences a temperature increase from 60°F to 76°F, with negligible pressure drop, as it passes through the condenser. a) Determine the mass flow rate of steam, in lb/h. b) The rate of heat transfer, in Btu/h, to the working fluid passing through the...
1) A nozzle is a device for increasing the velocity of a steadily flowing stream of...
1) A nozzle is a device for increasing the velocity of a steadily flowing stream of fluid. At the inlet to a certain nozzle the enthalpy of the fluid is 3025 kJ/kg and the velocity is 60 m/s. At the exit from the nozzle the enthalpy is 2790 kJ/kg. The nozzle is horizontal and there is negligible heat loss from it. (i) Find the velocity at the nozzle exit. (ii) If the inlet area is 0.1 m2 and specific volume...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT