Question

1) A nozzle is a device for increasing the velocity of a steadily flowing stream of...

1) A nozzle is a device for increasing the velocity of a steadily flowing stream of fluid. At the inlet to a certain nozzle the enthalpy of the fluid is 3025 kJ/kg and the velocity is 60 m/s. At the exit from the nozzle the enthalpy is 2790 kJ/kg. The nozzle is horizontal and there is negligible heat loss from it.

(i) Find the velocity at the nozzle exit.

(ii) If the inlet area is 0.1 m2 and specific volume at inlet

               is 0.19 m3/kg, find the rate of flow of fluid in kg/s.

(iii) If the specific volume at the nozzle exit is 0.5 m3/kg,

              find the exit area of the nozzle.

2) In the turbine of a gas turbine unit the gases flow through the turbine is 17 kg/s and the power developed by the turbine is 14000 kW. The enthalpies of the gases at inlet and outlet are 1200 kJ/kg and 360 kJ/kg respectively, and the velocities of the gases at

       inlet and outlet are 60 m/s and 150 m/s respectively.

      (i) Calculate the rate at which the heat is rejected from the turbine.

      (ii) Find also the area of the inlet pipe given that the specific  

            volume of the gases at inlet is 0.5 m3/kg.

3) Air flows steadily at the rate of 0.4 kg/s through an air compressor, entering at 6 m/s with a pressure of 1 bar and a specific volume of 0.85 m3/kg, and leaving at 4.5 m/s with

      a pressure of 6.9 bar and a specific volume of 0.16 m3/kg. The internal energy of air leaving is 88 kJ/kg greater than that of the air entering. Cooling water in a jacket surrounding the cylinder absorbs heat from the air at the rate of 59 kJ/s. (i) Calculate the power required to drive the compressor and (ii) the inlet and outlet pipe cross-sectional areas.

4) Steam enters a turbine at 20 m/s and specific

           enthalpy of 3000 kJ/kg and leaves the turbine at

           40 m/s and specific enthalpy of 2500 kJ/kg. Heat

           lost to the surroundings is 25 kJ/kg of steam as the

           steam passes through the turbine.

5) A turbine, operating under steady-flow conditions, receives 5000 kg of steam per hour. The steam enters the turbine at a velocity of 3000 m/min, an elevation of 5 m and a specific enthalpy of 2787 kJ/kg. It leaves the turbine at a velocity of 6000 m/min, an elevation of 1 m and a specific enthalpy of 2259 kJ/kg. Heat losses from the turbine to the surroundings amount to 16736 kJ/h. Determine the power output of the turbine.

           If the steam flow rate is 360000 kg/h, determine the

           output from the turbine in MW.

6) A refrigerator operates on reversed Carnot cycle.

    Determine the power required to drive refrigerator

    between temperatures of 42oC and 4oC if heat at the

    rate of 2 kJ/s is extracted from the low temperature

    region.

7) In a winter season when outside temperature is

     –1oC, the inside of house is to be maintained at

      25oC. Estimate the minimum power required to run

      the heat pump of maintaining the temperature.

      Assume heating load as 125 MJ/h.

8) What would be maximum efficiency of engine that

     can be had between the temperatures of 1150oC

      and 27oC ?

9)A heat engine is supplied with 278 kJ/s of heat at a constant fixed temperature of 283°C and the heat rejection takes place at 5°C. The following results were reported :

(i) 208 kJ/s are rejected, (ii) 139 kJ/s are rejected, (ii) 70 kJ/s are rejected.

    Classify which of the results report a reversible cycle or irreversible cycle or impossible results.

10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected.

11)An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the pressure is 105 kPa. Calculate P, V, and T at each point in the cycle, the mean effective pressure, and the thermal efficiency of the cycle.

12)An air-standard Diesel cycle has a compression ratio of 22

    and a cut-off ratio of 2.2. Determine the thermal efficiency of

    the cycle.

13)An air-standard Diesel engine has 1000 kJ/kg added as heat.

    At the beginning of the compression, the temperature is

    20°C, and the pressure is 150 kPa. If the compression ratio is

    20, determine the maximum pressure and temperature in

    the cycle.

14)An ideal Stirling engine using air as the working fluid

     operates between temperature limits of 300 and 2000 K.

     Determine the thermal efficiency of the cycle.

15) Consider an ideal Ericsson cycle with air as the working

     fluid executed in a steady-flow system. Air is at 270C and

     120 kPa at the beginning of the isothermal compression

     process, during which 150 kJ/kg of heat is rejected. Heat

     transfer to air occurs at 1200 K. Determine the thermal

     efficiency of the cycle and net work output per unit mass of

     air.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. In a turbo jet engine, the momentum of the gases leaving the nozzle produces the...
1. In a turbo jet engine, the momentum of the gases leaving the nozzle produces the propulsive force. The enthalpy and velocity of the gases at the nozzle entrance are 1200 kJ/kg and 200 m/s respectively. The enthalpy of the gas at exit is 900 kJ/kg. If the heat loss from the nozzle is negligible, determine the velocity of the gas jet at exit from the nozzle. 2. For question 1, if the diameter of the nozzle at exit is...
A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a...
A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a propeller as well as the compressor. Air enters the diffuser with a volumetric flow rate of 63.7 m3/s at 40 kPa, 240 K, and a velocity of 180 m/s, and decelerates essentially to zero velocity. The compressor pressure ratio is 10 and the compressor has an isentropic efficiency of 85%. The turbine inlet temperature is 1240 K, and its isentropic efficiency is 85%. The...
Increasing the temperature of the heat addition (T subscript H) in any heat engine cycle, with...
Increasing the temperature of the heat addition (T subscript H) in any heat engine cycle, with keeping all other parameters unchanged: A. None of the answers. B. Decreases the heat added at high temperature. C. Increases the thermal efficiency of the cycle. D. Decreases the thermal efficiency of the cycle. 1 points    QUESTION 2 The maximum thermal efficiency of the Rankine cycle power plant is achieved when: A. it works on Carnot heat engine cycle. B. the pump work...
1) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the...
1) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected 2) An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the...
10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the...
10) An air-standard Otto cycle has a compression ratio of 9. At the beginning of the compression process, the temperature is 20°C, and the pressure is 100 kPa. The heat added is 500 kJ/kg. Determine the cycle efficiency, work output, and the heat rejected. 11)An air-standard Otto cycle operates with a minimum temperature of 300 K and a maximum temperature of 1700 K. The compression ratio of the cycle is 7. At the beginning of the compression process, the pressure...
A steam turbine has inlet steam pressure p1 = 1.4 MPa absolute. Inlet steam temperature is...
A steam turbine has inlet steam pressure p1 = 1.4 MPa absolute. Inlet steam temperature is T1 = 400 oC. This corresponds to inlet enthalpy per unit mass of h1 = 3121 kJ/kg. Exit pressure of the steam is p2 = 101 kPa absolute. Exit steam temperature is T2 = 100 oC. This corresponds to exit enthalpy per unit mass of h2 = 2676 kJ/kg. Inlet speed of the steam is V1 = 15 m/s and exit speed is V2...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has a pressure ratio of 7. Air enters the compressor at 15 ºC at a rate of 10 kg/s and the gas turbine at 950 ºC. The bottoming cycle is a reheat Rankine cycle between the pressure limits of 6 MPa and 10 kPa. Steam is heated in a heat exchanger at a rate of 1.15 kg/s by the exhaust gases leaving the gas turbine,...
13)  A turbine, operating under steady-flow conditions, receives 5000 kg of steam per hour. The steam enters...
13)  A turbine, operating under steady-flow conditions, receives 5000 kg of steam per hour. The steam enters the turbine at a velocity of 3000 m/min, an elevation of 5 m and a specific enthalpy of 2787 kJ/kg. It leaves the turbine at a velocity of 6000 m/min, an elevation of 1 m and a specific enthalpy of 2259 kJ/kg. Heat losses from the turbine to the surroundings amount to 16736 kJ/h. Determine the power output of the turbine. 14) 12 kg...
7.2 A Brayton cycle gas engine is analyzed using the air standard method. Given the conditions...
7.2 A Brayton cycle gas engine is analyzed using the air standard method. Given the conditions at state 1, pressure ratio (rp), and cutoff ratio (rc) determine the efficiency and other values listed below. The specific heat ratio and gas constant for air is given as k=1.4 and R=0.287 kJ/kg-K respectively. T1 (K) = 333 P1 (kPa) = 170 rp = 10.7 rc = 2.54 AV (m3/s) = 1.7 a) Determine the specific enthalpy (kJ/kg) at state 1. b) Determine...
1.      Air enters a converging-diverging nozzle with a total pressure of 1100 kPa and a total...
1.      Air enters a converging-diverging nozzle with a total pressure of 1100 kPa and a total temperature of 127°C. The exit area to throat area ratio is 1.8. The throat area is 5 cm2. The velocity at the throat is sonic and the diverging section acts as a nozzle. The diverging section is now acts as a supersonic nozzle. Assume that a normal shock stands in the exit plane of the nozzle. Determine the following: a.       The static pressure and...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT