Question

What are possible reasons that the heat duty of the tube side differs from that of...

What are possible reasons that the heat duty of the tube side differs from that of the annular side in a double pipe heat exchanger?

Homework Answers

Answer #1

Solution :

The possibile reason that heat duty on tube side differs than the annular side in double pipe heat exchanger because as the tube side is exposed to atmosphere so some heat is lost to the ambient air outside the tube and The annular side which is not in direct contact with the atmosphere so annular heat duty is less as not much heat is wasted to the outside whereas high heat duty is required at tube side.

All the best buddy please upvote it

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Possible shell and tube heat exchanger have 9 tubes? How can found the leaks in shell...
Possible shell and tube heat exchanger have 9 tubes? How can found the leaks in shell and tube heat exchanger ? In shell and tube heat exchanger should we keep hot fluid in tube or cold fluid and why?
a tube-within-a-tube heat exchanger operating at steady state is composed of one pipe containing Refrigerant 134a...
a tube-within-a-tube heat exchanger operating at steady state is composed of one pipe containing Refrigerant 134a and another pipe containing an ideal gas with constant specific heat at constant pressure of 1.2 kJ/(kg∙K). The refrigerant 134a enters the heat exchanger in a saturated liquid state and exits the heat exchanger in a saturated vapor state. The temperature and mass flow rate of the refrigerant 134a are -20° C and 3 kgs/s, respectively, at both its inlet and outlet. The ideal...
Water at a flow rate of 60 kg/s enters the shell-side of a baffled shell-and-tube heat...
Water at a flow rate of 60 kg/s enters the shell-side of a baffled shell-and-tube heat exchanger at 35 °C and leaves at 25 °C. The heat will be transferred to 150 kg/s of raw water coming from a supply at 15 °C. You are requested to design the heat exchanger for this purpose. A single shell and single tube pass is preferable. The tube diameter is ¾ in. (19 mm outer diameter with 16 mm inner diameter) and tubes...
A horizontal shel-and-tube heat exchanger with two tube passes and one shell pass is being used...
A horizontal shel-and-tube heat exchanger with two tube passes and one shell pass is being used to heat 9 kg/s of 100% ethanol from 25 to 65 C at atmospheric pressure. The ethanol pasar through the inside of the tubes, and saturated steam at 115 C condenses an the shell of the tubes. The tubes are atell with an OD of 0.019 m and a BWG of 14. The exchanger contains a total of 100 tubes (50 tubes per pass)....
A counter current double pipe heat exchanger is used to boil but not superheat water at...
A counter current double pipe heat exchanger is used to boil but not superheat water at 100 DegreeC at rate of about 0.1 kg/s. This is achieved by flowing hot oil at 400 DegreeC through the inner pipe at a rate of 5 kg/s. Latent heat of water: 2265 kJ/kg Heat capacity of water: 4180 J/kgK Heat capacity of the oil: 1800 J/kgK What is the temperature of he hot oil leaving the heat exchanger? What is the overall heat...
A thin-walled double pipe counter flow heat exchanger is to be used to cool oil (cp...
A thin-walled double pipe counter flow heat exchanger is to be used to cool oil (cp = 2200 j/kg*K) from 150 ℃ to 30 ℃ at a rate of 2.1 kg/s by water (cp= 4180 J/kg*K) that enters at 20 ℃ at a rate of 1.2 kg/s. The diameter of the tube is 2.5 cm, and its length is 10 m. Using Excel (a) Determine the overall heat transfer coefficient of this heat exchanger. (b) Investigate the effects of oil...
A shell and-tube heat exchanger is required for the following service: Hot stream Cold Stream Aromatic...
A shell and-tube heat exchanger is required for the following service: Hot stream Cold Stream Aromatic Stream Cooling Water inlet Temperature (oC) 85 20 outlet Temperature (oC) 40 35 Mass Flowrate x heat Capacity (kW/oC) 85.2 Hot Stream cold stream (Cooling water) Heat Capacity (J/kg K) 2840 4193 Density (kg/m3) 750 999 Viscosity (cP) 0.34 1.016 Thermal conductivity (W/m.K) 0.19 0.594 Fouling Factor (m2.oC/W 0.00018 0.000176 ? The cooling water is allocated to the tube-side of the exchanger. ? It...
A concentric tube heat exchanger is comprised of a stainless steel (ks = 40 W/mK) inner...
A concentric tube heat exchanger is comprised of a stainless steel (ks = 40 W/mK) inner pipe, NPS 2- nominal schedule 40 size (corresponding to an inner diameter of 52.5 mm and an outer diameter of 60.3 mm), and an outer stainless steel pipe of NPS 3-nominal schedule 40 (ID = 77.9 mm, OD = 88.9 mm). The heat exchanger has an effective length of 35 m. The inner pipe fluid is ammonia (?a = 0.3 · 10?6 m2/s, cpa...
A concentric tube heat exchanger is comprised of a stainless steel (ks = 40 W/mK) inner...
A concentric tube heat exchanger is comprised of a stainless steel (ks = 40 W/mK) inner pipe, NPS 2- nominal schedule 40 size (corresponding to an inner diameter of 52.5 mm and an outer diameter of 60.3 mm), and an outer stainless steel pipe of NPS 3-nominal schedule 40 (ID = 77.9 mm, OD = 88.9 mm). The heat exchanger has an effective length of 35 m. The inner pipe fluid is ammonia (va = 0.3 · 10-6m2/s, cpa =...
A finned heat exchanger tube is made of aluminum alloy (k=186W/m· K) and contains 125 annular...
A finned heat exchanger tube is made of aluminum alloy (k=186W/m· K) and contains 125 annular fins per meter of tube length. The bare tube between fins has an OD of 50 mm. The fins are 4mm thick and extend 15mm beyond the external surface of the tube. The outer surface of the tube will be at 200◦C and the tube will be exposed to a fluid at 20◦C with a heat-transfer coefficient of 40W/m2 · K. Calculate: (a) The...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT