Question

Water at a flow rate of 60 kg/s enters the shell-side of a baffled shell-and-tube heat...

Water at a flow rate of 60 kg/s enters the shell-side of a baffled shell-and-tube heat exchanger at 35 °C and leaves at 25 °C. The heat will be transferred to 150 kg/s of raw water coming from a supply at 15 °C. You are requested to design the heat exchanger for this purpose. A single shell and single tube pass is preferable. The tube diameter is ¾ in. (19 mm outer diameter with 16 mm inner diameter) and tubes are laid out on 1 in. square pitch. The water velocity in a single tube is 2.5 m/s. Maximum length of the heat exchanger 5 m is required because of space limitations. The tube material has k=70 W/m·K. Assume a total fouling resistance of 0.000176 m2·K/W. Baffle spacing is 650 mm. Reasonable design assumption can be made along with the calculation if it is needed. Calculate: The number of tubes, shell diameter, overall heat transfer coefficient and the length of the heat exchanger. Is this design acceptable?
please help me.course name is heat exchangers.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1-shell-2-tube pass heat exchanger is made of a steel alloy (thermal conductivity 45.4 W/(m K)....
A 1-shell-2-tube pass heat exchanger is made of a steel alloy (thermal conductivity 45.4 W/(m K). It is used to cool distilled water from 34oC to 29oC using water which flows inside tubes with an outer diameter of 19 mm and an inner diameter of 16 mm. The number of tubes in the shell is 160 (80 per pass). The mass flow rate of distilled water in the shell is 76180 kg/h. The cold water enters the heat exchanger at...
A 1 to 2 baffled shell-and-tube type heat exchanger is used as an engine oil cooler....
A 1 to 2 baffled shell-and-tube type heat exchanger is used as an engine oil cooler. Cooling water flows through tubes at 25 °C at a rate of 8.16 kg/s and exits at 35 °C. The inlet and outlet temperatures of the engine oil are 65 and 55 °C, respectively. The heat exchanger has 12.25-in. I.D. shell, and 18 BWG and 0.75-in. O.D. tubes. A total of 160 tubes are laid out on a 15/16-in. triangular pitch. By assuming Ro...
A shell and-tube heat exchanger is required for the following service: Hot stream Cold Stream Aromatic...
A shell and-tube heat exchanger is required for the following service: Hot stream Cold Stream Aromatic Stream Cooling Water inlet Temperature (oC) 85 20 outlet Temperature (oC) 40 35 Mass Flowrate x heat Capacity (kW/oC) 85.2 Hot Stream cold stream (Cooling water) Heat Capacity (J/kg K) 2840 4193 Density (kg/m3) 750 999 Viscosity (cP) 0.34 1.016 Thermal conductivity (W/m.K) 0.19 0.594 Fouling Factor (m2.oC/W 0.00018 0.000176 ? The cooling water is allocated to the tube-side of the exchanger. ? It...
Hot oil at a rate of 5 kg/s (Cpm= 2 kJ/kg. K) enters in a 2-4...
Hot oil at a rate of 5 kg/s (Cpm= 2 kJ/kg. K) enters in a 2-4 shell and tube heat exchanger at 366 K and is cooled to 344 K by 2 kg/s of water (Cpm= 4 kJ/kg. K) entering at 283 K. The overall heat transfer coefficient U0 is 340 W/m . Calculate the area requied. If the length of each tube is 1.2 m, and the diameter of each tube is 0.1 m, calculate the number of tubes?
Question 2. Answer all parts of this question a) A shell and tube heat exchanger is...
Question 2. Answer all parts of this question a) A shell and tube heat exchanger is to heat 10,000 kg h–1 of water from 16 to 84°C using hot oil entering at 160°C and leaving at 92°C. The oil will flow through the shell of the heat exchanger. The water will flow through 11 brass tubes of 22.9 mm inside diameter and 25.4 mm outside diameter, with thermal conductivity 137 W m–1 K–1, with each tube making two passes through...
Liquid carbon dioxide at a flow rate of 100 000 kg/hr is to be heated from...
Liquid carbon dioxide at a flow rate of 100 000 kg/hr is to be heated from 0°C to 20°C in a 1-2 shell and tube heat exchanger. Water is available at a flow rate of 113 000 kg/hr and a temperature of 40°C. A 25-in. (635 mm)-ID 1-2 shell and tube exchanger having 3/4-in., 10 BWG tubes laid out on a 1-in. triangular pitch is available. The tubes are 2 m long and the exchanger contains three baffles. Determine expected...
A 1 shell pass, 4 tube pass shell-and-tube heat exchanger is used to cool therminol 59...
A 1 shell pass, 4 tube pass shell-and-tube heat exchanger is used to cool therminol 59 in a refinery. The therminol 59 enters the tubes at a mass flow rate of 0.87 kg/s and changes in temperature from 93◦C to 49◦C. Water is the other fluid. It enters the shell at a mass flow rate of 1.20 kg/s, and changes in temeperture from 23◦C to 37.1◦C. Determine the following: (a) (10 pts) The heat transfer between the two fluids (b)...
A sugar solution (? = 1080 kg/m3, cp = 3601 J/kg ? K, kf = 0.5764...
A sugar solution (? = 1080 kg/m3, cp = 3601 J/kg ? K, kf = 0.5764 W/m ? K, ? = 1.3 × 10–3 N ? s/m2) flows at rate of 60,000 kg/hr and is to be heated from 25°C to 50°C. Water at 95°C is available at a flow rate of 75,000 kg/hr (cp = 4004 J/kg ? K). It is proposed to use a one shell pass and two tubes pass shell-and-tube heat exchanger containing 3/4 in. OD,...
Saturated water vapor leaves a steam turbine at a flow rate of 1.47 kg/s and a...
Saturated water vapor leaves a steam turbine at a flow rate of 1.47 kg/s and a pressure of 0.51 bar. The vapor is to be completely condensed to saturated liquid in a shell-and-tube heat exchanger that uses city water as the cold fluid. The water enters the thin-walled tubes at 17oC and is to leave at 57.6 oC. Assuming an overall heat transfer coefficient of 2000 W/m2K, determine the required heat exchanger surface area and the water flow rate. cp,c...
Data for carbon dioxide: Molecular weight:44.0 Heat capacity of gas phase: 0.036+4.23 x10-5T   (in kJ/moleoC, T is...
Data for carbon dioxide: Molecular weight:44.0 Heat capacity of gas phase: 0.036+4.23 x10-5T   (in kJ/moleoC, T is in oC) Viscosity                                 Pr                    k (W/m K) 180oC2.13 x10-5kg/(m s)                  0.721               0.029 130oC  1.93x10-5kg/(m s)                  0.738               0.025   80oC  1.72x10-5kg/(m s)                  0.755               0.020 Approximate density: 2.0 kg/m3 Data for water: Molecular weight:18.0 Heat capacity for liquid water: 0.0754 kJ/mole oC   Viscosity: Viscosity                                 Pr                    k (W/m K) 180oC139 x10-6kg/(m s)                   0.94                 0.665 130oC  278x10-6kg/(m s)                   1.72                 0.682   80oC  472x10-6kg/(m s)                   3.00                 0.658 Ideal gas constant: 0.08206 L atm/(mol K) Carbon dioxide, with flow rate of 0.10 kg/s, is to be cooled from 180 oC to 80...