Question

a tube-within-a-tube heat exchanger operating at steady state is composed of one pipe containing Refrigerant 134a...

a tube-within-a-tube heat exchanger operating at steady state is composed of one pipe containing
Refrigerant 134a and another pipe containing an ideal gas with constant specific heat at constant
pressure of 1.2 kJ/(kg∙K). The refrigerant 134a enters the heat exchanger in a saturated liquid state
and exits the heat exchanger in a saturated vapor state. The temperature and mass flow rate of the
refrigerant 134a are -20° C and 3 kgs/s, respectively, at both its inlet and outlet. The ideal gas enters
the heat exchanger with a temperature of 140° C. The mass flow rate of the ideal gas is 2 kg/s.
Determine the temperature in °C of the ideal gas exiting the heat exchanger. Assume the heat
exchanger is well-insulated and neglect kinetic and potential energy changes.

Homework Answers

Answer #1

It is given that heat exchanger is well insulated and the main thing to note here that mass flow rate different for refrigerant and temperature difference is quite high so we will also get a low value of temperature fot ideal gas exit temperature.

see below the complete solution

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Water is used to cool R-134a in the condenser of a heat exchanger. The refrigerant enters...
Water is used to cool R-134a in the condenser of a heat exchanger. The refrigerant enters the counter-flow heat exchanger at 800 kPa, 80 0C and a mass flow rate of 2 kg/s. The refrigerant exits as a saturated liquid. Cooling water enters the condenser at 500 kPa and 18 0C and leaves the condenser at 30 0C. Determine the necessary mass flow rate of water. Each fluid is assumed to flow at constant pressure.
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -12oC with...
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -12oC with a volumetric flow rate of 0.18 m3/s. Refrigerant exits at 9 bar, 70oC. Changes in kinetic and potential energy from inlet to exit can be ignored. Determine the volumetric flow rate at the exit, in m3/s, and the compressor power, in kW.
An ideal vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid....
An ideal vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 1 bar, and saturated liquid exits the condenser at 4 bar. The mass flow rate of refrigerant is 8.5 kg/min. Determine the compressor power, in kW.
Air enters a counterflow heat exchanger operating at steady state at 22°C, 0.1 MPa and exits...
Air enters a counterflow heat exchanger operating at steady state at 22°C, 0.1 MPa and exits at 7°C. Refrigerant 134a enters at 0.2 MPa, a quality of 0.21, and a mass flow rate of 30 kg/h. Refrigerant exits at 0°C. There is no significant change in pressure for either stream. (a) For the Refrigerant 134a stream, determine the rate of heat transfer, in kJ/h (b) For the refrigerant stream evaluate the change in flow exergy rate, in kJ/h. (c) For...
Refrigerant 134a is the working fluid in an ideal vapor-compression refrigeration cycle operating at steady state....
Refrigerant 134a is the working fluid in an ideal vapor-compression refrigeration cycle operating at steady state. Refrigerant enters the compressor at 1 bar, -12°C, and the condenser pressure is 9 bar. Liquid exits the condenser at 32°C. The mass flow rate of refrigerant is 7 kg/min. Determine: (a) the magnitude of the compressor power, in kW. (b) the refrigeration capacity, in tons. (c) the coefficient of performance.
Refrigerant 134a is the working fluid in a vapor-compression heat pump that provides 35 kW to...
Refrigerant 134a is the working fluid in a vapor-compression heat pump that provides 35 kW to heat a dwelling on a day when the outside temperature is below freezing. Saturated vapor enters the compressor at 2.6 bar, and saturated liquid exits the condenser, which operates at 8 bar. Determine for an isentropic compressor efficiency of 85%: (a) the refrigerant mass flow rate, in kg/s. (b) the magnitude of the compressor power, in kW. (c) the coefficient of performance.
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated...
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 2 bar, and saturated liquid exits the condenser at 8 bar. The isentropic compressor efficiency is 80%. The mass flow rate of refrigerant is 7 kg/min. Determine: (a) the compressor power, in kW, (b) the refrigeration capacity, in tons, (1 ton = 3.5168 kW) and, (c) the coefficient of performance, (d) rate of entropy production in kW/K, for the...
Refrigerant 134a enters a tube at a rate of 0.07 kg/s as saturated liquid at 70...
Refrigerant 134a enters a tube at a rate of 0.07 kg/s as saturated liquid at 70 C and leaves the tube as saturated liquid as well at -8 C. It loses 10 kW of heat to the surroundings in the process. If the surroundings are at a temperature 10 C, find the total entropy generation in this process. Assume steady conditions
A gas flows through a long pipe of constant diameter. The outlet of the pipe is...
A gas flows through a long pipe of constant diameter. The outlet of the pipe is higher than the inlet, and the pressure of the gas at the outlet is less than the inlet pressure. The gas temperature is constant throughout the pipe and the system is in steady state. a) How do the mass flow rates at the inlet and outlet temperature compare? The densities? The volumetric flow rates (assume ideal gas)? What about the change in potential energy...
An ice-making machine operates on the ideal vapor-compression cycle, using R-134a. The refrigerant enters the compressor...
An ice-making machine operates on the ideal vapor-compression cycle, using R-134a. The refrigerant enters the compressor as saturated vapor at 140 kPa and leaves the condenser as saturated liquid at 600 kPa. Water enters the ice machine at 13oC and leaves as ice at -4oC, while removing heat at 393 kJ per kg of water. Estimate the mass flow rate of the refrigerant and the power input to the ice machine for an ice production rate of 7 kg/h.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT