Question

1. In a turbo jet engine, the momentum of the gases leaving the nozzle produces the...

1. In a turbo jet engine, the momentum of the gases leaving the nozzle produces the propulsive force. The enthalpy and velocity of the gases at the nozzle entrance are 1200 kJ/kg and 200 m/s respectively. The enthalpy of the gas at exit is 900 kJ/kg. If the heat loss from the nozzle is negligible, determine the velocity of the gas jet at exit from the nozzle.

2. For question 1, if the diameter of the nozzle at exit is 500 mm, find the mass flow rate of gas. The gas density at the nozzle inlet and exit are 0.81 kg/m3 and 0.39 kg/m3 respectively. Also determine the diameter of the nozzle at the inlet.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Q1. An ideal jet engine with a compressor, combustion chamber, turbine and converging nozzle was held...
Q1. An ideal jet engine with a compressor, combustion chamber, turbine and converging nozzle was held stationary during an experiment to measure thrust in a laboratory. The turbine is used to drive the compressor. The atmospheric pressure and room temperature in the laboratory is measured as 102 kPa and 283 K. The gauge pressure at compressor exit is measured as 0.0781 bar and the inlet air flow is 10.4414 l/s. The maximum temperature reached in the jet engine is measured...
1) A nozzle is a device for increasing the velocity of a steadily flowing stream of...
1) A nozzle is a device for increasing the velocity of a steadily flowing stream of fluid. At the inlet to a certain nozzle the enthalpy of the fluid is 3025 kJ/kg and the velocity is 60 m/s. At the exit from the nozzle the enthalpy is 2790 kJ/kg. The nozzle is horizontal and there is negligible heat loss from it. (i) Find the velocity at the nozzle exit. (ii) If the inlet area is 0.1 m2 and specific volume...
A jet engine is operating at an altitude of 7000 m. The mass of air passing...
A jet engine is operating at an altitude of 7000 m. The mass of air passing through the engine is 46 kg/s and the heat addition in the combustion chamber is 500 kJ/kg. The cross-sectional area of the combustion chamber is 0.5 m2, and the air enters the chamber at a pressure of 80 kPa and a temperature of 80°C. After the combustion chamber, the products of combustion, which can be assumed to have the properties of air, are expanded...
Q2. An ideal turbojet engine consists of a diffuser, compressor, combustor, turbine and a converging nozzle....
Q2. An ideal turbojet engine consists of a diffuser, compressor, combustor, turbine and a converging nozzle. The engine is operating on an aircraft flying at 250 m/s at an altitude where the air is at 35 kPa and -37 o C. The inlet diameter of this engine is 1.72 m; the thrust produced by the engine under ideal cruising conditions is 60740 N; and the maximum temperature in the jet engine is maintained at 650 o C. Assume constant specific...
1. In a typical nozzle, air is used as a medium to undergo increased velocity at...
1. In a typical nozzle, air is used as a medium to undergo increased velocity at the exit. Air at 627 0C enters into a nozzle with negligible velocity and leaves at 27 0C. Determine the velocity of air the exit, assuming no heat loss and nozzle being horizontal. Take the value of Cp = 1.005 kJ/kg K for air. Also, determine the area of the nozzle at the exit, if the density of the air is 1.12 kg/m3.
A horizontal (x direction +→) water jet from a round nozzle is striking towards right on...
A horizontal (x direction +→) water jet from a round nozzle is striking towards right on a curved vane at velocity V = 8 m/s with a flow rate of Q = 160 Liter per minute. The direction of water is turned downwards by 45° from the direction of the striking jet and exiting the vane at the same speed. Calculate the net momentum change (exit - inlet) in the direction of the striking fluid (along x direction towards right→)...
I ONLY NEED ANSWERS TO F.) AND G.) I SOLVED THE REST. THANK YOU! The Boeing...
I ONLY NEED ANSWERS TO F.) AND G.) I SOLVED THE REST. THANK YOU! The Boeing 747 has a cruising altitude of 45,000 feet and cruising speed of 275 m/s. At this elevation, the temperature and pressure according to the US Standard Atmosphere (air properties as a function of altitude) are 220K and 1.8x104 Pa, respectively. The engines are steady state devices that can be modeled using the 1st Law of Thermodynamics with air (ideal gas) as the working fluid...
1) 20 kg/min water at 20º C is mixed adiabatically with 40 kg/min water at 80...
1) 20 kg/min water at 20º C is mixed adiabatically with 40 kg/min water at 80 ºC. What is the outlet water temperature? Select one: a. 80 °C b. 60 °C c. 50 °C d. 70 °C 2) Steam at 0.8 MPa and 500 ºC is throttled over a well insulated valve to 0.6 MPa, what is the outlet temperature Select one: a. 450 ºC b. 500 ºC c. DOF>0 d. 400 ºC 3) Humid air at 70 C and...