Question

Q2. An ideal turbojet engine consists of a diffuser, compressor, combustor, turbine and a converging nozzle....

Q2. An ideal turbojet engine consists of a diffuser, compressor, combustor, turbine and a converging nozzle. The engine is operating on an aircraft flying at 250 m/s at an altitude where the air is at 35 kPa and -37 o C. The inlet diameter of this engine is 1.72 m; the thrust produced by the engine under ideal cruising conditions is 60740 N; and the maximum temperature in the jet engine is maintained at 650 o C. Assume constant specific heat values at room temperature, choked flow conditions at nozzle exit and ideal operation for all components of the engine. The jet fuel has a heating value of 42,700 kJ/kg.

The minimum fuel consumption rate required (kg/s) under the cruising conditions given in the problem is:

Homework Answers

Answer #1

GIVEN:

calorific value of fuel = 42700 kJ/Kg

speed of the aircraft = 250 m/s

thrust produced (ideal cruising) = 60740 N

for minimum fuel consumption rate under cruising condition:

for ideal turbojet, all fuel burnt, will be used to produce the thrust.

[mass flow rate of fuel * calorific value of fuel ] = [ thrust produced * speed of the aircraft ]

f * (42700 * 1000) = ( 60740 * 250 )

f = 15185000 / 42700000

f = 0.356 Kg/sec

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Q1. An ideal jet engine with a compressor, combustion chamber, turbine and converging nozzle was held...
Q1. An ideal jet engine with a compressor, combustion chamber, turbine and converging nozzle was held stationary during an experiment to measure thrust in a laboratory. The turbine is used to drive the compressor. The atmospheric pressure and room temperature in the laboratory is measured as 102 kPa and 283 K. The gauge pressure at compressor exit is measured as 0.0781 bar and the inlet air flow is 10.4414 l/s. The maximum temperature reached in the jet engine is measured...
A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a...
A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a propeller as well as the compressor. Air enters the diffuser with a volumetric flow rate of 63.7 m3/s at 40 kPa, 240 K, and a velocity of 180 m/s, and decelerates essentially to zero velocity. The compressor pressure ratio is 10 and the compressor has an isentropic efficiency of 85%. The turbine inlet temperature is 1240 K, and its isentropic efficiency is 85%. The...
As a propulsion engineer, you are tasked with testing the turbojet engine of an aircraft to...
As a propulsion engineer, you are tasked with testing the turbojet engine of an aircraft to determine its performance characteristics.  The turbojet engine is analyzed on an air-standard basis based on the Brayton cycle. Air, with a velocity of 265 m/s and volumetric flow rate of 230 m3/s, enters the diffuser at 18 kPa, -57oC, and exits at 30 kPa.  The compressor pressure ratio is 15 to 1. The maximum temperature exiting the combustor is 1087oC. The pressure exiting the nozzle is...
A turbojet aircraft is flying with a velocity of 320 m/s at a certain altitude, where...
A turbojet aircraft is flying with a velocity of 320 m/s at a certain altitude, where the ambient conditions are 32 kPa and -32°C. The pressure ratio across the compressor is 12, and the temperature at the turbine inlet is 1400K. Air enters the compressor at a rate of 40 kg/s, and the and the jet fuel has a heating value of 42700 kJ/kg. Assuming ideal operations for all components and constant specific heats for air at room temperature, (Cp=1.005...
A turbojet engine is fitted to an aircraft flying at M = 0.85 in conditions where...
A turbojet engine is fitted to an aircraft flying at M = 0.85 in conditions where the ambient temperature is 216 K and the ambient pressure is 18.75 kPa. You are to assume adiabatic flow and isentropic conditions. The following data on the engine are known: Compressor pressure ratio ?? = 12 Combustion chamber efficiency ?? = 1 Turbine Inlet temperature ?4 = 1796 ? Calculate: a) The total temperature and pressure at entry to the compressor. (6 Marks) b)...
I ONLY NEED ANSWERS TO F.) AND G.) I SOLVED THE REST. THANK YOU! The Boeing...
I ONLY NEED ANSWERS TO F.) AND G.) I SOLVED THE REST. THANK YOU! The Boeing 747 has a cruising altitude of 45,000 feet and cruising speed of 275 m/s. At this elevation, the temperature and pressure according to the US Standard Atmosphere (air properties as a function of altitude) are 220K and 1.8x104 Pa, respectively. The engines are steady state devices that can be modeled using the 1st Law of Thermodynamics with air (ideal gas) as the working fluid...
It is desired to an alyze the performacne of a gas turbine engine operating on a...
It is desired to an alyze the performacne of a gas turbine engine operating on a Bratyon cycle with a free power turbine. The engine is under test at static conditions with an ambient temperature of 20'C and pressure of 1atm. The pressure ratio of the compressor is 5. The engine burnsmethane fuel with a heat of combustion of 50MJ/kg. The air to fuel ratio (AF) is 45. Assume the pressure at the inlet to the compressor is equal to...
A simple twin-spool turbofan is designed for a business jet. The cruise design point for a...
A simple twin-spool turbofan is designed for a business jet. The cruise design point for a Mach number of 0.75 ans altitude of 12,500m (Ta=216.7K, Pa=0.1793bar, a=295.1m/s) is as follows: Airflow 9.6kg/s Bypass ratio 3.8 Fan pressure ratio 1.7 Compressor pressure ratio 7.9 Turbine inlet temperature 1220K Polytropic effciency (all) 0.90 Combustion pressure loss/compressor delivery pressure 5% Mechanical efficiencies 0.99 Combustion efficiency 0.98 Intake efficiency 0.96 Nozzle efficiencies 1.00 Seperate exhaust are used. Calculate the thrust, fuel flow and SFC....
1) A nozzle is a device for increasing the velocity of a steadily flowing stream of...
1) A nozzle is a device for increasing the velocity of a steadily flowing stream of fluid. At the inlet to a certain nozzle the enthalpy of the fluid is 3025 kJ/kg and the velocity is 60 m/s. At the exit from the nozzle the enthalpy is 2790 kJ/kg. The nozzle is horizontal and there is negligible heat loss from it. (i) Find the velocity at the nozzle exit. (ii) If the inlet area is 0.1 m2 and specific volume...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT