Question

Determine the molecular weight of a gas if its specific heats at constant pressure and volume...

Determine the molecular weight of a gas if its specific heats at constant pressure and volume are Cp=2.286 kj/kg K and Cv=1.768 kj/kg K.   Ans=16.05 kg/k mol

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine the final specific volume (m3/kg) for a gas undergoing a process from state 1 (T1...
Determine the final specific volume (m3/kg) for a gas undergoing a process from state 1 (T1 = 324 K, v1 = 0.2353 m3/kg) to a temperature of T2 = 883 K if s2 - s1 = 0.961 kJ/kg-K. Assume constant specific heats as given below (DO NOT USE the ideal gas tables). Cp = 1.135 kJ/kg-K Cv = 0.759 kJ/kg-K Note: Give your answer to four decimal places. Correct Answer: [Correct] 0.4006 ± 1% Please show your methodology.
A piston-cylinder assembly containing 3 kg of an ideal gas undergoes a constant pressure process from...
A piston-cylinder assembly containing 3 kg of an ideal gas undergoes a constant pressure process from an initial volume of 48 m3 to a final volume of 30 m3 . During the process, the piston supplies 1.2 MJ of work to the gas. The gas has a constant specific heat at constant volume of 1.80 kJ/(kg∙K) and a specific gas constant of 1.48 kJ/(kg∙K). Neglect potential and kinetic energy changes. a. Determine the initial specific volume of the gas in...
Calculate the change in entropy (in J/K) when 38.7 g of nitrogen gas is heated at...
Calculate the change in entropy (in J/K) when 38.7 g of nitrogen gas is heated at a constant pressure of 1.50 atm from 22.9 ºC to 88.2 ºC. (The molar specific heats are Cv is 20.8 J/(mol-K) and Cp is 29.1 J/(mol-K) .)
Calculate the change in entropy (in J/K) when 52.8 g of nitrogen gas is heated at...
Calculate the change in entropy (in J/K) when 52.8 g of nitrogen gas is heated at a constant pressure of 1.50 atm from 16.5 ºC to 62.8 ºC. (The molar specific heats are Cv is 20.8 J/(mol-K) and Cp is 29.1 J/(mol-K) .)
A 2.0 mol sample of ideal gas with molar specific heat Cv = (5/2)R is initially...
A 2.0 mol sample of ideal gas with molar specific heat Cv = (5/2)R is initially at 300 K and 100 kPa pressure. Determine the final temperature and the work done on the gas when 1.6 kJ of heat is added to the gas during each of these separate processes (all starting at same initial temperature and pressure: (a) isothermal (constant temperature) process, (b) isometric (constant volume) process, and (c) isobaric (constant pressure) process. Hint: You’ll need the 1st Law...
A perfect gas has a constant volume molar heat capacity of CV ,m  1.5 R...
A perfect gas has a constant volume molar heat capacity of CV ,m  1.5 R and a constant pressure molar heat capacity of Cp,m  2.5 R . For the process of heating 2.80 mol of this gas with a 120 W heater for 65 seconds, calculate a) q, w, T, and U for heating at a constant volume, b) q, w, T, and H for heating at a constant pressure. Note: Square = Delta
The heat capacity at constant volume of a certain amount of a monatomic gas is 53.7...
The heat capacity at constant volume of a certain amount of a monatomic gas is 53.7 J/K. (a) Find the number of moles of the gas. in mol (b) What is the internal energy of the gas at T = 286 K? in kJ (c) What is the heat capacity of the gas at constant pressure? in J/k
13)One mole of neon gas is heated from 358 K to 426 K at constant pressure....
13)One mole of neon gas is heated from 358 K to 426 K at constant pressure. Note that neon has a molar specific heat of c = 20.79 J/mol · K for a constant–pressure process. (a) Calculate the energy Q transferred to the gas. kJ (b) Calculate the change in the internal energy of the gas. kJ (c) Calculate the work done on the gas. kJ
Air is contained in a rigid, well-insulated container of volume 3 m3. The air undergoes a...
Air is contained in a rigid, well-insulated container of volume 3 m3. The air undergoes a process from an initial state with a pressure of 200 kPa and temperature of 300 K. During the process, the air receives 720 kJ of work from a paddle wheel. Model the air as an ideal gas with constant specific heats. Evaluate the specific heats at 300 K. Neglect changes in kinetic energy and potential energy. Determine the mass of the air in kg,...
1) An ideal gas is contained in a piston-cylinder device and undergoes a power cycle as...
1) An ideal gas is contained in a piston-cylinder device and undergoes a power cycle as follows: 1-2 isentropic compression from an initial temperatureT1= 20 degree celsius with a compression ratio r = 5 2-3 constant pressure heat addition 3-1 constant volume heat rejection The gas has constant specific heats with cv = 0.7 kJ/kg·K and R= 0.3 kJ/kg·K. (a) Sketch the P-v and T-s diagrams for the cycle. (b) Determine the heat and work interactions for each pro-cess, in...