Question

Calculate the change in entropy (in J/K) when 52.8 g of nitrogen gas is heated at...

Calculate the change in entropy (in J/K) when 52.8 g of nitrogen gas is heated at a constant pressure of 1.50 atm from 16.5 ºC to 62.8 ºC. (The molar specific heats are Cv is 20.8 J/(mol-K) and Cp is 29.1 J/(mol-K) .)

Homework Answers

Answer #1

Given, mass of nitrogen gas = 52.8 g ,

therefore moles of nitrogen gas (N2) = mass / molar mass =( 52.8 g / 28 g/mol) = 1.886 mol N2 gas.

and Ti = (16.5 + 273) K = 289.5 K , Tf = (62.8 +273)K = 335.8 K , Cp = 29.1 J/mol K

We have the relation as,

Tds = dh - vdp,

At constant pressure,dp=0
so, Tds = dh

=> ds = dh/T

=> ds = (Cp/T)dT

=> S = nCp x ln(Tf / Ti)

=>S = nCp x ln(Tf/Ti)

=> S = (1.886 mol) x 29.1 J/mol K x ln(335.8 K/289.5 K)

=> S = 54.8826 x ln (1.159) J/K

=> S = 54.8826 x 0.147 J/K

=> S =  8.067 J/K

Therefore, the change in entropy = 8.067 J/K

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the change in entropy (in J/K) when 38.7 g of nitrogen gas is heated at...
Calculate the change in entropy (in J/K) when 38.7 g of nitrogen gas is heated at a constant pressure of 1.50 atm from 22.9 ºC to 88.2 ºC. (The molar specific heats are Cv is 20.8 J/(mol-K) and Cp is 29.1 J/(mol-K) .)
13)One mole of neon gas is heated from 358 K to 426 K at constant pressure....
13)One mole of neon gas is heated from 358 K to 426 K at constant pressure. Note that neon has a molar specific heat of c = 20.79 J/mol · K for a constant–pressure process. (a) Calculate the energy Q transferred to the gas. kJ (b) Calculate the change in the internal energy of the gas. kJ (c) Calculate the work done on the gas. kJ
Calculate the change in entropy of the system when 15.0g of ice at -12.0C is converted...
Calculate the change in entropy of the system when 15.0g of ice at -12.0C is converted to water vapor at 105C at a constant pressure of 1bar. The constant pressure molar heat capacity ofH2O (s) and H2O (l) is 75.291J/mol K and that of H2O (g) is 33.58 J/K mol
The standard molar entropy of benzene is 173.3 J/K-mol. Calculate the change in its standard molar...
The standard molar entropy of benzene is 173.3 J/K-mol. Calculate the change in its standard molar Gibbs energy when benzene is heated from 25C to 45C.
Methane is heated from 27.0 ºC to 63.0 ºC at constant pressure. Calculate ΔU and ΔH....
Methane is heated from 27.0 ºC to 63.0 ºC at constant pressure. Calculate ΔU and ΔH. Assume that methane is an ideal gas. (CV= 5.82 + (7.55 x 10-2)T - (17.99 x 10-6)T2 J K-1 mol-1).
A cylinder contains 250 g of Helium at 200 K. The external pressure is constant at...
A cylinder contains 250 g of Helium at 200 K. The external pressure is constant at 1 atm. The temperature of the gas inside the cylinder is then lowered by 85 K. Calculate q for this system in response to the change made. Include units of J when entering your answer. Heat capacity for Helium = 20.8 J/(mol K) Molecular weight for Helium = 4 g/mol I tried doing the q=Cp*m*dT and got 110500 J but it was incorrect.
Carbon dioxide is an important greenhouse gas. Calculate the enthalpy change for a 66.5g sample of...
Carbon dioxide is an important greenhouse gas. Calculate the enthalpy change for a 66.5g sample of CO2 heated from 0.6 C to 50.0 C at constant pressure assuming (a) that Cp,m is not a f(T) and (b) where Cp,m is a f(T). Cp,m(CO2) = 27.11 J/molK at 25 C and a = 44.22 J/mol K, b=0.00879 J/molK^2 and c=-8.62x10^5 K/mol. How does this energy change compare to the average intermolecular force?
An insulated cylinder is filled with nitrogen gas at 25ºC and 1.00 bar. The nitrogen is...
An insulated cylinder is filled with nitrogen gas at 25ºC and 1.00 bar. The nitrogen is then compressed adiabatically with a constant pressure of 5.00 bar until equilibrium is reached. i. What is the final temperature of the nitrogen if it is treated as an ideal gas with molar heat capacity CP = 7/2 R ? ii. Calculate ΔH (in kJ mol-1 ) and ΔS (in J mol-1 K-1 ) for the compression. (Hint: Because the enthalpy is a state...
HgO(s) Hg(g) O2(g) Enthaply Delta H kj/mol -90.8 61.3 Entropy Delta S   j/mol. K 70.3 174.9...
HgO(s) Hg(g) O2(g) Enthaply Delta H kj/mol -90.8 61.3 Entropy Delta S   j/mol. K 70.3 174.9 205.0 Above is a table of thermodynamics date for the chemical species in the reaction: 2HgO(s) ----> 2Hg(g)+ O2(g) at 25 C A) Calculate the molar entropy of reaction at 25 C B) Calculate the standard Gibbs free enregy of the reaction at 25 C given that the enthaply of reaction at 25 C is 304.2 Kj/mol C)Calculate the equilibrium constant for the reaction...
Determine the molecular weight of a gas if its specific heats at constant pressure and volume...
Determine the molecular weight of a gas if its specific heats at constant pressure and volume are Cp=2.286 kj/kg K and Cv=1.768 kj/kg K.   Ans=16.05 kg/k mol