Question

**A 2.0 mol sample of ideal gas with molar specific heat
Cv = (5/2)R is initially at 300 K and 100 kPa pressure. Determine
the final temperature and the work done on the gas when 1.6 kJ of
heat is added to the gas during each of these separate processes
(all starting at same initial temperature and pressure: (a)
isothermal (constant temperature) process, (b) isometric (constant
volume) process, and (c) isobaric (constant pressure) process.
Hint: You’ll need the 1 ^{st} Law of
Thermodynamics.**

Answer #1

3.0 moles of an ideal gas are subjected to the following
processes. First the volume is tripled in an isobaric process. Then
it undergoes an isothermal process to a pressure of 9.0 kPa. The
volume is then cut in half in another isobaric process after being
tripled. Finally, it returns to the original state in an isochoric
process. (a) Draw a PV diagram of the cycle. Label each state
(vertex) with a letter (A, B, …) and each transition with...

One more of an ideal gas initially at 27oC and 1 bar pressure is
heated and allowed to expand reversibly at a constant pressure
until the final temperature is 327oC. For this gas, Cv,m = 2.5R,
constant over the temperature range. (Note from SRB: Cv,m is the
molar heat capacity. An earlier version of the 5th edition that I
used last year used Cv with a bar over it, as we have been doing in
class. Sorry for any confusion.)....

A heat engine composed of 1.6 moles of an ideal, monotonic gas
is initially at 350 K and 1x10^5 Pa. The first step is an
isothermal expansion to a pressure of 5x10^4 Pa. Second, the gas is
compressed at constant pressure back to the inital volume. Finally
the gas returns, at constant volume to the initial state. What is
the total work done by the gas during this cycle? What is the
efficiency of this cycle?

An ideal gas initially at 350 K undergoes an isobaric expansion
at 2.50 kPa. The volume increases from 1.00 m3 to 3.00 m3 and 13.0
kJ is transferred to the gas by heat. (a) What is the change in
internal energy of the gas? kJ (b) What is the final temperature of
the gas?

Ten liters of a monoatomic ideal gas at 25o C and 10
atm pressure are expanded to a final pressure of 1 atm. The molar
heat capacity of the gas at constant volume, Cv, is 3/2R and is
independent of temperature. Calculate the work done, the heat
absorbed, and the change in U and H for the gas if the process is
carried out
(1) isothermally and reversibly, and
(2) adiabatically and reversibly.
Having determined the final state of the...

A 0.505-mol sample of an ideal diatomic gas at 408 kPa and 309 K
expands quasi-statically until the pressure decreases to 150 kPa.
Find the final temperature and volume of the gas, the work done by
the gas, and the heat absorbed by the gas if the expansion is the
following.
(a) isothermal
final temperature K
volume of the gas
L
work done by the gas
J
heat absorbed
J
(b) adiabatic
final temperature K
volume of the gas L...

A perfect gas has a constant volume molar heat capacity of CV ,m
1.5 R and a constant pressure molar heat capacity of Cp,m 2.5
R . For the process of heating 2.80 mol of this gas with a 120 W
heater for 65 seconds, calculate
a) q, w, T, and U for heating at a constant volume,
b) q, w, T, and H for heating at a constant pressure.
Note: Square = Delta

a. One mole of an ideal monoatomic gas (closed system, Cv,m)
initially at 1 atm and 273.15 K experiences a reversible process in
which the volume is doubled. the nature of the process is
unspecified, but the following quantities are known, deltaH=2000.0J
and q=1600.0J. Calculate the initial volume, the final temperature,
the final pressure, deltaU, and w for the process.
b. Suppose the above gas was taken from the same initial state
to the same final state as in the...

A cylinder contains 1.5 moles of ideal gas, initially at a
temperature of 113 ∘C. The cylinder is provided with a frictionless
piston, which maintains a constant pressure of 6.4×105Pa on the
gas. The gas is cooled until its temperature has decreased to 27∘C.
For the gas CV = 11.65 J/mol⋅K, and the ideal gas
constant R = 8.314 J/mol⋅K.
1.Find the work done by the gas during this process.
2.What is the change in the internal (thermal) energy of...

2.)1.0 mol sample of an ideal monatomic gas originally at a
pressure of 1 atm undergoes a 3-step process as follows:
(i) It expands
adiabatically from T1 = 588 K to T2 = 389 K
(ii) It is compressed at
constant pressure until its temperature reaches T3 K
(iii) It then returns to its
original pressure and temperature by a constant volume process.
A). Plot these processes on a PV diagram
B). Determine the temperature T3
C)....

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 7 minutes ago

asked 7 minutes ago

asked 7 minutes ago

asked 12 minutes ago

asked 16 minutes ago

asked 25 minutes ago

asked 27 minutes ago

asked 27 minutes ago

asked 29 minutes ago

asked 29 minutes ago

asked 31 minutes ago

asked 31 minutes ago