Question

A 2.0 mol sample of ideal gas with molar specific heat Cv = (5/2)R is initially...

A 2.0 mol sample of ideal gas with molar specific heat Cv = (5/2)R is initially at 300 K and 100 kPa pressure. Determine the final temperature and the work done on the gas when 1.6 kJ of heat is added to the gas during each of these separate processes (all starting at same initial temperature and pressure: (a) isothermal (constant temperature) process, (b) isometric (constant volume) process, and (c) isobaric (constant pressure) process. Hint: You’ll need the 1st Law of Thermodynamics.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
28 moles of an ideal gas with a molar specific heat at constant volume of cv=3.2R...
28 moles of an ideal gas with a molar specific heat at constant volume of cv=3.2R is initially in state "A" at pressure 73390 Pa and volume 1.0 m3. The gas then expands isobarically to state "B" which has volume 2.6?3m3. The gas then cools isochorically to state "C". The gas finally returns from state "C" to "A" via an isothermal process. What is the adiabatic constant γ for this gas? What is Q during the expansion from "A" to...
3.0 moles of an ideal gas are subjected to the following processes. First the volume is...
3.0 moles of an ideal gas are subjected to the following processes. First the volume is tripled in an isobaric process. Then it undergoes an isothermal process to a pressure of 9.0 kPa. The volume is then cut in half in another isobaric process after being tripled. Finally, it returns to the original state in an isochoric process. (a) Draw a PV diagram of the cycle. Label each state (vertex) with a letter (A, B, …) and each transition with...
A 0.520-mol sample of an ideal diatomic gas at 432 kPa and 324 K expands quasi-statically...
A 0.520-mol sample of an ideal diatomic gas at 432 kPa and 324 K expands quasi-statically until the pressure decreases to 144 kPa. Find the final temperature and volume of the gas, the work done by the gas, and the heat absorbed by the gas if the expansion is the following. a) isothermal and adiabatic final temperature volume of the gas wrok done by the gas heat absorbed? K=?, L=?, work done?, heat absorb?
One more of an ideal gas initially at 27oC and 1 bar pressure is heated and...
One more of an ideal gas initially at 27oC and 1 bar pressure is heated and allowed to expand reversibly at a constant pressure until the final temperature is 327oC. For this gas, Cv,m = 2.5R, constant over the temperature range. (Note from SRB: Cv,m is the molar heat capacity. An earlier version of the 5th edition that I used last year used Cv with a bar over it, as we have been doing in class. Sorry for any confusion.)....
A perfect gas has a constant volume molar heat capacity of CV ,m  1.5 R...
A perfect gas has a constant volume molar heat capacity of CV ,m  1.5 R and a constant pressure molar heat capacity of Cp,m  2.5 R . For the process of heating 2.80 mol of this gas with a 120 W heater for 65 seconds, calculate a) q, w, T, and U for heating at a constant volume, b) q, w, T, and H for heating at a constant pressure. Note: Square = Delta
A cylinder contains 1.5 moles of ideal gas, initially at a temperature of 113 ∘C. The...
A cylinder contains 1.5 moles of ideal gas, initially at a temperature of 113 ∘C. The cylinder is provided with a frictionless piston, which maintains a constant pressure of 6.4×105Pa on the gas. The gas is cooled until its temperature has decreased to 27∘C. For the gas CV = 11.65 J/mol⋅K, and the ideal gas constant R = 8.314 J/mol⋅K. 1.Find the work done by the gas during this process. 2.What is the change in the internal (thermal) energy of...
A heat engine composed of 1.6 moles of an ideal, monotonic gas is initially at 350...
A heat engine composed of 1.6 moles of an ideal, monotonic gas is initially at 350 K and 1x10^5 Pa. The first step is an isothermal expansion to a pressure of 5x10^4 Pa. Second, the gas is compressed at constant pressure back to the inital volume. Finally the gas returns, at constant volume to the initial state. What is the total work done by the gas during this cycle? What is the efficiency of this cycle?
A 0.505-mol sample of an ideal diatomic gas at 408 kPa and 309 K expands quasi-statically...
A 0.505-mol sample of an ideal diatomic gas at 408 kPa and 309 K expands quasi-statically until the pressure decreases to 150 kPa. Find the final temperature and volume of the gas, the work done by the gas, and the heat absorbed by the gas if the expansion is the following. (a) isothermal final temperature K volume of the gas L work done by the gas J heat absorbed J (b) adiabatic final temperature K volume of the gas L...
You have 1.3 moles of a fictitious ideal gas whose molar specific heat values are Cv...
You have 1.3 moles of a fictitious ideal gas whose molar specific heat values are Cv = 13.43 J/(mol·K) and Cp = 21.74 J/(mol·K). The gas is heated from T = 26.5 °C to T = 120.7 °C at a constant volume of 0.0306 m3 1. How much work is done by the gas? 2. How much thermal energy (heat) flows into the gas? 3. What is the change in the internal energy of the gas?
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes...
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes a 3-step process as follows:                  (i)         It expands adiabatically from T1 = 588 K to T2 = 389 K                  (ii)        It is compressed at constant pressure until its temperature reaches T3 K                  (iii)       It then returns to its original pressure and temperature by a constant volume process. A). Plot these processes on a PV diagram B). Determine the temperature T3 C)....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT