Question

It is desired to an alyze the performacne of a gas turbine engine operating on a...

It is desired to an alyze the performacne of a gas turbine engine operating on a Bratyon cycle with a free power turbine. The engine is under test at static conditions with an ambient temperature of 20'C and pressure of 1atm. The pressure ratio of the compressor is 5. The engine burnsmethane fuel with a heat of combustion of 50MJ/kg. The air to fuel ratio (AF) is 45. Assume the pressure at the inlet to the compressor is equal to the ambient pressure. The efficiencies of the compressor, high pressure (HP) turbine, and free turbine respectively are .85, .88, .82. Complete the following steps:

1. Vary AF from 20 to 60 in steps of 2 and compute the temperature at the inlet to the HP turbine nconsidering the actual cycle. Make a plot of the same. Comment on results.

2. Now, consider two values of AF: 35 and 45. For each of these AF values, consider compressor pressure ratios from 2 to 100 in increments of 2.

a. Considering the actual cycle, compute the thermal efficiency and work output from the free turbine per unit mass at each pressure ratio for both values of AF.

b. Make a plot showing the thermal efficiency as a function of pressure ratio for each AF.

c. Make a plot showing the work output from the free turbine per unit mass as a function of pressure ratio for each AF.

d. Comment on the plots and the value of pressure ratio that gives you the maximum efficiency or the maximum free turbine work output per unit mass.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Analyze a Gas turbine engine at a design speed under the following data employing a ...
Analyze a Gas turbine engine at a design speed under the following data employing a  separate power turbine, heat exchanger, reheater and intercooler between two-stage  compression.  Efficiency of compression in each stage: 85%  Isentropic efficiency of compressor turbine: 90%  Isentropic efficiency of power turbine: 85%  Transmission efficiency: 98%  Pressure ratio in each stage of compression: 2:1  Pressure loss in intercooler: 0.07 bar  Temperature after intercooling: 300 K  Thermal ratio of...
A single shaft gas turbine engine receives air at atmospheric conditions of 14.7 psia and 80...
A single shaft gas turbine engine receives air at atmospheric conditions of 14.7 psia and 80 degrees F. The compressor discharge pressure is 103psia and the compressor efficiency is 87%. The turbine inlet temperature is 1980 degrees F and the exhaust temperature is 1173 degrees F. Assume a 3 psi pressure drop in the combustion chamber and that inlet and exhaust ducts losses are both 27.7 inches of water. Find: a) Sketch the system and label the state point locations...
Q1. An ideal jet engine with a compressor, combustion chamber, turbine and converging nozzle was held...
Q1. An ideal jet engine with a compressor, combustion chamber, turbine and converging nozzle was held stationary during an experiment to measure thrust in a laboratory. The turbine is used to drive the compressor. The atmospheric pressure and room temperature in the laboratory is measured as 102 kPa and 283 K. The gauge pressure at compressor exit is measured as 0.0781 bar and the inlet air flow is 10.4414 l/s. The maximum temperature reached in the jet engine is measured...
A turbojet engine is fitted to an aircraft flying at M = 0.85 in conditions where...
A turbojet engine is fitted to an aircraft flying at M = 0.85 in conditions where the ambient temperature is 216 K and the ambient pressure is 18.75 kPa. You are to assume adiabatic flow and isentropic conditions. The following data on the engine are known: Compressor pressure ratio ?? = 12 Combustion chamber efficiency ?? = 1 Turbine Inlet temperature ?4 = 1796 ? Calculate: a) The total temperature and pressure at entry to the compressor. (6 Marks) b)...
An air-standard Brayton cycle has a compressor pressure ratio of 10. Air enters the compressor at...
An air-standard Brayton cycle has a compressor pressure ratio of 10. Air enters the compressor at p1 = 14.7 lbf/in.2, T1 = 70°F, with a mass flow rate of 90,000 lb/h. The turbine inlet temperature is 1800°R. Calculate the thermal efficiency and the net power developed, in horsepower, if (a) the turbine and compressor isentropic efficiencies are each 100%. % hp (b) the turbine and compressor isentropic efficiencies are 88 and 84%, respectively. % hp (c) the turbine and compressor...
n ideal air-standard Brayton cycle operates at steady state with compressor inlet conditions of 290 K...
n ideal air-standard Brayton cycle operates at steady state with compressor inlet conditions of 290 K and 95 kPa and a fixed turbine inlet temperature of 1650 K. For a compressor pressure ratio of 10, determine: (a) the exhaust temperature of the cycle, in K. (b) the back work ratio. (c) the net work developed per unit mass flowing, in kJ/kg. (d) the heat addition per unit mass flowing, in kJ/kg. (e) the thermal efficiency for the cycle.
A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a...
A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a propeller as well as the compressor. Air enters the diffuser with a volumetric flow rate of 63.7 m3/s at 40 kPa, 240 K, and a velocity of 180 m/s, and decelerates essentially to zero velocity. The compressor pressure ratio is 10 and the compressor has an isentropic efficiency of 85%. The turbine inlet temperature is 1240 K, and its isentropic efficiency is 85%. The...
A gas turbine power plant operates on a Brayton cycles has a pressure ratio of 7....
A gas turbine power plant operates on a Brayton cycles has a pressure ratio of 7. Air enters the compressor at 300 K. The energy in the form of heat is transferred to the air in the amount of 950 kJ/kg. Using a variable specific heat for air and assuming the compressor isentropic efficiency is 83 percent and turbine isentropic efficiency is 85 percent. Determine the followings: (i) The highest temperature in the cycle (ii) The net work output, in...
A small gas turbine has a pressure ratio of 9.5, and compressor efficiency of 88%. Overall...
A small gas turbine has a pressure ratio of 9.5, and compressor efficiency of 88%. Overall thermal efficiency is 37%. Ambient conditions are 27oC, 1 bar. Air leaving the compressor passes through a regenerator where it is heated by the exhaust gases leaving the turbine. If the maximum temperature in the cycle is 1300oC and the exhaust gases leave the turbine at 700oC, calculate the effectiveness of the regenerator, giving your answer to the nearest integer percentage. Use standard aircycle...
Air enters the compressor of a simple gas turbine at p1 = 14 lbf/in2, T1 =...
Air enters the compressor of a simple gas turbine at p1 = 14 lbf/in2, T1 = 520°R. The isentropic efficiencies of the compressor and turbine are 83 and 87%, respectively. The compressor pressure ratio is 16 and the temperature at the turbine inlet is 2500°R. The volumetric flow rate of the air entering the compressor is 9000 ft3/min. Use an air-standard analysis. Determine all temperatures at each state. A) Determine the net power developed, in Btu/h. (Already did this part,...