Question

Find a basis for the space of symmetric 2×2-matrices. and show the dim

Find a basis for the space of symmetric 2×2-matrices. and show the dim

Homework Answers

Answer #1

A 2 x 2 matrix A is of the form

a

b

c

d

where a,b,cd are arbitrary numbers.

If A is a symmetric matrix, then AT = A so that b = c. Then A changes to

a

b

b

d

Now, let M1 =

1

0

0

0

M2 =

0

1

1

0

and M3 =

0

0

0

1

Then any 2 x 2 symmetric matrix can be expressed as a linear combination of M1,M2,M3. Also, these 3 matrices are linearly independent as none of these can either be expressed as a scalar multiple of another of these matrices or a linear combination of the other 2 matrices.

Hence the set { M1,M2,M3} is a basis for the space of symmetric 2×2-matrices. The dimension of the space is 3.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A matrix A is symmetric if AT = A and skew-symmetric if AT = -A. Let...
A matrix A is symmetric if AT = A and skew-symmetric if AT = -A. Let Wsym be the set of all symmetric matrices and let Wskew be the set of all skew-symmetric matrices (a) Prove that Wsym is a subspace of Fn×n . Give a basis for Wsym and determine its dimension. (b) Prove that Wskew is a subspace of Fn×n . Give a basis for Wskew and determine its dimension. (c) Prove that F n×n = Wsym ⊕Wskew....
Let Mn be the vector space of all n × n matrices with real entries. Let...
Let Mn be the vector space of all n × n matrices with real entries. Let W = {A ∈ M3 : trace(A) = 0}, U = {B ∈ Mn : B = B t } Verify U, W are subspaces . Find a basis for W and U and compute dim(W) and dim(U).
. Find a basis for Nul A and dim Nul A. ? = [ 2 2...
. Find a basis for Nul A and dim Nul A. ? = [ 2 2 −1 0 1 −1 −1 2 −3 1 1 1 −2 0 −1 0 0 1 1 1 ]
Show that the set GLm,n(R) of all mxn matrices with the usual matrix addition and scalar...
Show that the set GLm,n(R) of all mxn matrices with the usual matrix addition and scalar multiplication is a finite dimensional vector space with dim GLm,n(R) = mn. Show that if V and W be finite dimensional vector spaces with dim V = m and dim W = n, B a basis for V and C a basis for W then hom(V,W)-----MatB--->C(-)--------> GLm,n(R) is a bijective linear transformation. Hence or otherwise, obtain dim hom(V,W). Thank you!
Consider W as the set of all skew-symmetric matrices of size 3×3. Is it a vector...
Consider W as the set of all skew-symmetric matrices of size 3×3. Is it a vector space? If yes, then find its dimension and a basis.
Let V be the vector space of 2 × 2 matrices over R, let <A, B>=...
Let V be the vector space of 2 × 2 matrices over R, let <A, B>= tr(ABT ) be an inner product on V , and let U ⊆ V be the subspace of symmetric 2 × 2 matrices. Compute the orthogonal projection of the matrix A = (1 2 3 4) on U, and compute the minimal distance between A and an element of U. Hint: Use the basis 1 0 0 0   0 0 0 1   0 1...
We can identify the set V of all 3×3-matrices (real coefficients) with vector space R9. Show...
We can identify the set V of all 3×3-matrices (real coefficients) with vector space R9. Show that the set of all 3 × 3 symmetric matrices is a vector subspace of V .
Show that the Frobenius norm is indeed a norm on the linear space of matrices.
Show that the Frobenius norm is indeed a norm on the linear space of matrices.
9. Let S and T be two subspaces of some vector space V. (b) Define S...
9. Let S and T be two subspaces of some vector space V. (b) Define S + T to be the subset of V whose elements have the form (an element of S) + (an element of T). Prove that S + T is a subspace of V. (c) Suppose {v1, . . . , vi} is a basis for the intersection S ∩ T. Extend this with {s1, . . . , sj} to a basis for S, and...
1. Find the orthogonal projection of the matrix [[3,2][4,5]] onto the space of diagonal 2x2 matrices...
1. Find the orthogonal projection of the matrix [[3,2][4,5]] onto the space of diagonal 2x2 matrices of the form lambda?I.   [[4.5,0][0,4.5]]  [[5.5,0][0,5.5]]  [[4,0][0,4]]  [[3.5,0][0,3.5]]  [[5,0][0,5]]  [[1.5,0][0,1.5]] 2. Find the orthogonal projection of the matrix [[2,1][2,6]] onto the space of symmetric 2x2 matrices of trace 0.   [[-1,3][3,1]]  [[1.5,1][1,-1.5]]  [[0,4][4,0]]  [[3,3.5][3.5,-3]]  [[0,1.5][1.5,0]]  [[-2,1.5][1.5,2]]  [[0.5,4.5][4.5,-0.5]]  [[-1,6][6,1]]  [[0,3.5][3.5,0]]  [[-1.5,3.5][3.5,1.5]] 3. Find the orthogonal projection of the matrix [[1,5][1,2]] onto the space of anti-symmetric 2x2 matrices.   [[0,-1] [1,0]]  [[0,2] [-2,0]]  [[0,-1.5] [1.5,0]]  [[0,2.5] [-2.5,0]]  [[0,0] [0,0]]  [[0,-0.5] [0.5,0]]  [[0,1] [-1,0]] [[0,1.5] [-1.5,0]]  [[0,-2.5] [2.5,0]]  [[0,0.5] [-0.5,0]] 4. Let p be the orthogonal projection of u=[40,-9,91]T onto the...