Question

A matrix A is symmetric if AT = A and skew-symmetric if AT = -A. Let...

A matrix A is symmetric if AT = A and skew-symmetric if AT = -A. Let Wsym be the set of all symmetric matrices and let Wskew be the set of all skew-symmetric matrices

(a) Prove that Wsym is a subspace of Fn×n . Give a basis for Wsym and determine its dimension.

(b) Prove that Wskew is a subspace of Fn×n . Give a basis for Wskew and determine its dimension.

(c) Prove that F n×n = Wsym ⊕Wskew. Verify that dim(Fn×n ) = dim(Wsym)+ dim(Wskew)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider W as the set of all skew-symmetric matrices of size 3×3. Is it a vector...
Consider W as the set of all skew-symmetric matrices of size 3×3. Is it a vector space? If yes, then find its dimension and a basis.
1. If A is an n n matrix, prove that (a) ATA is a symmetric matrix....
1. If A is an n n matrix, prove that (a) ATA is a symmetric matrix. (b) A + AT is a symmetric matrix and A - AT is a skew-symmetric matrix. (c) A is the sum of a symmetric and a skew-symmetric matrix.
n×n-matrix M is symmetric if M = M^t. Matrix M is anti-symmetric if M^t = -M....
n×n-matrix M is symmetric if M = M^t. Matrix M is anti-symmetric if M^t = -M. 1. Show that the diagonal of an anti-symmetric matrix are zero 2. suppose that A,B are symmetric n × n-matrices. Prove that AB is symmetric if AB = BA. 3. Let A be any n×n-matrix. Prove that A+A^t is symmetric and A - A^t antisymmetric. 4. Prove that every n × n-matrix can be written as the sum of a symmetric and anti-symmetric matrix.
9. Let S and T be two subspaces of some vector space V. (b) Define S...
9. Let S and T be two subspaces of some vector space V. (b) Define S + T to be the subset of V whose elements have the form (an element of S) + (an element of T). Prove that S + T is a subspace of V. (c) Suppose {v1, . . . , vi} is a basis for the intersection S ∩ T. Extend this with {s1, . . . , sj} to a basis for S, and...
Let A be an n × n-matrix. Show that there exist B, C such that B...
Let A be an n × n-matrix. Show that there exist B, C such that B is symmetric, C is skew-symmetric, and A = B + C. (Recall: C is called skew-symmetric if C + C^T = 0.) Remark: Someone answered this question but I don't know if it's right so please don't copy his solution
Let Mn be the vector space of all n × n matrices with real entries. Let...
Let Mn be the vector space of all n × n matrices with real entries. Let W = {A ∈ M3 : trace(A) = 0}, U = {B ∈ Mn : B = B t } Verify U, W are subspaces . Find a basis for W and U and compute dim(W) and dim(U).
Show that the set GLm,n(R) of all mxn matrices with the usual matrix addition and scalar...
Show that the set GLm,n(R) of all mxn matrices with the usual matrix addition and scalar multiplication is a finite dimensional vector space with dim GLm,n(R) = mn. Show that if V and W be finite dimensional vector spaces with dim V = m and dim W = n, B a basis for V and C a basis for W then hom(V,W)-----MatB--->C(-)--------> GLm,n(R) is a bijective linear transformation. Hence or otherwise, obtain dim hom(V,W). Thank you!
Let A be an mxn matrix. Show that the set of all solutions to the homogeneous...
Let A be an mxn matrix. Show that the set of all solutions to the homogeneous equation Ax=0 is a subspace of R^n and the set of all vectors b such that Ax=b is consistent is a subspace of R^m. Is the set of solutions to a non-homogeneous equation Ax=b a subspace of R^n? Explain why or why not.
Let A be a symmetric matrix of size 3 × 3 and consider the following quadratic...
Let A be a symmetric matrix of size 3 × 3 and consider the following quadratic function f(x) = x T Ax. Show that the gradient of f is: ∇xf(x) = 2Ax. A matrix is symmetric if Aij = Aji for all i and j.
5. (a) Prove that det(AAT ) = (det(A))2. (b) Suppose that A is an n×n matrix...
5. (a) Prove that det(AAT ) = (det(A))2. (b) Suppose that A is an n×n matrix such that AT = −A. (Such an A is called a skew- symmetric matrix.) If n is odd, prove that det(A) = 0.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT