Question

In regards to the function f(x,y) = xye^y+2x. Find Duf(1,0) in the direction of the vector...

In regards to the function f(x,y) = xye^y+2x. Find Duf(1,0) in the direction of the vector <3,4>. And determine the greatest slope along the surface that occurs at the point (1,0).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Let f(x, y) = 2x + xy^2 , x, y ∈ R. (a) Find the...
1. Let f(x, y) = 2x + xy^2 , x, y ∈ R. (a) Find the directional derivative Duf of f at the point (1, 2) in the direction of the vector →v = 3→i + 4→j . (b) Find the maximum directional derivative of f and a unit vector corresponding to the maximum directional derivative at the point (1, 2). (c) Find the minimum directional derivative and a unit vector in the direction of maximal decrease at the point...
. For the function f(x, y) = xye^x−y , at the point (2, 2) (a) find...
. For the function f(x, y) = xye^x−y , at the point (2, 2) (a) find the gradient. (b) find the directional derivative in the direction of the vector 3i − j. (c) in the direction of which unit vector is the rate of increase maximum? What is the maximum rate of increase? (d) in the direction of which unit vector(s) is the directional derivative zero?
the function f(x; y) = xye^x-y, at the point (2; 2) (1)find the gradient. (2) find...
the function f(x; y) = xye^x-y, at the point (2; 2) (1)find the gradient. (2) find the directional derivative in the direction of the vector 3i - j. (3)find the direction of which unit vector is the rate of increase maximum? What is the maxi- mum rate of increase? (4)find the direction of which unit vector(s) is the directional derivative zero?
Find the directional derivative of the function f(x,y)=x^6+y^3/(x+y+6 ) at the point (2,-2) in the direction...
Find the directional derivative of the function f(x,y)=x^6+y^3/(x+y+6 ) at the point (2,-2) in the direction of the vector < - 2 ,2>. b) Also find the maximum rate of change of f at the given point and the unit vector of the direction in which the maximum occurs.
Consider the function f(x, y) = sin(2x − 2y) (a) Solve and find the gradient of...
Consider the function f(x, y) = sin(2x − 2y) (a) Solve and find the gradient of the function. (b) Find the directional derivative of the function at the point P(π/2,π/6) in the direction of the vector v = <sqrt(3), −1>   (c) Compute the unit vector in the direction of the steepest ascent at A (π/2,π/2)
Suppose f(x,y)=sqrt(tan(x)+y) and u is the unit vector in the direction of 〈2,−1〉. Then, (a) ∇f(x,y)=∇f(x,y)=...
Suppose f(x,y)=sqrt(tan(x)+y) and u is the unit vector in the direction of 〈2,−1〉. Then, (a) ∇f(x,y)=∇f(x,y)= (b) ∇f(0.4,9)=∇f(0.4,9)= (c) fu(0.4,9)=Duf(0.4,9)=
f(x)=1/2x ln x^4, (-1,0) a) find an equation of the tangent line to the graph of...
f(x)=1/2x ln x^4, (-1,0) a) find an equation of the tangent line to the graph of the function at the indicated point. b) Use a graphing utility to graph the function and its tangent line at the point.
(9) (a)Find the double integral of the function f (x, y) = x + 2y over...
(9) (a)Find the double integral of the function f (x, y) = x + 2y over the region in the plane bounded by the lines x = 0, y = x, and y = 3 − 2x. (b)Find the maximum and minimum values of 2x − 6y + 5 subject to the constraint x^2 + 3(y^2) = 1. (c)Consider the function f(x,y) = x^2 + xy. Find the directional derivative of f at the point (−1, 3) in the direction...
) Consider the function f(x,y)=−2x^2−y^2. Find the the directional derivative of ff at the point (1,−3)(1,−3)...
) Consider the function f(x,y)=−2x^2−y^2. Find the the directional derivative of ff at the point (1,−3)(1,−3) in the direction given by the angle θ=π/2. Find the unit vector which describes the direction in which ff is increasing most rapidly at (1,−3).
For the function f(x, y)=ln(1+xy) a.Find the value of the directional derivative of f at the...
For the function f(x, y)=ln(1+xy) a.Find the value of the directional derivative of f at the point (-1, -2) in the direction <3,4>. b.Find the unit vector that gives the direction of steepest increase of f at the point (2,3).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT