Question

Find the directional derivative of the function f(x,y)=x^6+y^3/(x+y+6 ) at the point (2,-2) in the direction...

Find the directional derivative of the function f(x,y)=x^6+y^3/(x+y+6 ) at the point (2,-2) in the direction of the vector < - 2 ,2>.
b) Also find the maximum rate of change of f at the given point and the unit vector of the direction in which the maximum occurs.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
let f(x,y) = xe^(xy) Find the directional derivative of f at point (2,0) in the direction...
let f(x,y) = xe^(xy) Find the directional derivative of f at point (2,0) in the direction of vector <-6,8>. Find the maximum rate of change of f at point (2,0) and the direction in which it occurs.
. For the function f(x, y) = xye^x−y , at the point (2, 2) (a) find...
. For the function f(x, y) = xye^x−y , at the point (2, 2) (a) find the gradient. (b) find the directional derivative in the direction of the vector 3i − j. (c) in the direction of which unit vector is the rate of increase maximum? What is the maximum rate of increase? (d) in the direction of which unit vector(s) is the directional derivative zero?
the function f(x; y) = xye^x-y, at the point (2; 2) (1)find the gradient. (2) find...
the function f(x; y) = xye^x-y, at the point (2; 2) (1)find the gradient. (2) find the directional derivative in the direction of the vector 3i - j. (3)find the direction of which unit vector is the rate of increase maximum? What is the maxi- mum rate of increase? (4)find the direction of which unit vector(s) is the directional derivative zero?
) Consider the function f(x,y)=−2x^2−y^2. Find the the directional derivative of ff at the point (1,−3)(1,−3)...
) Consider the function f(x,y)=−2x^2−y^2. Find the the directional derivative of ff at the point (1,−3)(1,−3) in the direction given by the angle θ=π/2. Find the unit vector which describes the direction in which ff is increasing most rapidly at (1,−3).
Find the directional derivative of the function  f (x, y) = tan−1(xy)   at the point (1, ...
Find the directional derivative of the function  f (x, y) = tan−1(xy)   at the point (1, 3) in the direction of the unit vector parallel to the vector v = 4i + j.
Find the directional derivative of the function at the given point in the direction of the...
Find the directional derivative of the function at the given point in the direction of the vector v. f(x, y, z) = x2y + y2z, (2, 7, 9), v = (2, −1, 2) Dvf(2, 7, 9) =
Find the directional derivative of the function f(x, y, z) = 4xy + xy3z − x...
Find the directional derivative of the function f(x, y, z) = 4xy + xy3z − x z at the point P = (2, 0, −1) in the direction of the vector v = 〈2, 9, −6〉.
Compute the directional derivative of the function f(x,y)=(√1+3x^2+8y^2) at the point (0,−3) in the direction of...
Compute the directional derivative of the function f(x,y)=(√1+3x^2+8y^2) at the point (0,−3) in the direction of the vector →v=2ˆi−3ˆj. Enter an exact answer involving radicals as necessary.   
find the directional derivative of f(x,y) = x^2y^3 +2x^4y at the point (3,-1) in the direction...
find the directional derivative of f(x,y) = x^2y^3 +2x^4y at the point (3,-1) in the direction theta= 5pi/6 the gradient of f is f(x,y)= the gradient of f (3,-1)= the directional derivative is:
1. Let f(x, y) = 2x + xy^2 , x, y ∈ R. (a) Find the...
1. Let f(x, y) = 2x + xy^2 , x, y ∈ R. (a) Find the directional derivative Duf of f at the point (1, 2) in the direction of the vector →v = 3→i + 4→j . (b) Find the maximum directional derivative of f and a unit vector corresponding to the maximum directional derivative at the point (1, 2). (c) Find the minimum directional derivative and a unit vector in the direction of maximal decrease at the point...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT