Question

1. Solve all three: a. Determine whether the plane 2x + y + 3z – 6...

1. Solve all three:

a. Determine whether the plane 2x + y + 3z – 6 = 0 passes through the points (3,6,-2) and (-1,5,-1)

b. Find the equation of the plane that passes through the points (2,2,1) and (-1,1,-1) and is perpendicular to the plane 2x - 3y + z = 3.

c. Determine whether the planes are parallel, orthogonal, or neither. If they are neither parallel nor orthogonal, find the angle of intersection:

3x + y - 4z = 3 and -9x - 3y + 12z = 4

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine whether the planes x−2y+3z−4 = 0 and −2x+5y+4z = −1 are orthogonal.
Determine whether the planes x−2y+3z−4 = 0 and −2x+5y+4z = −1 are orthogonal.
given the planes P1 and P2 determine whether the planes intersect or are parallel. if they...
given the planes P1 and P2 determine whether the planes intersect or are parallel. if they intersect, give the direction vector for thr line of intersection. P1:3x+y-3z=4 p2:2x+3y+2z=6
Let P be the plane given by the equation 2x + y − 3z = 2....
Let P be the plane given by the equation 2x + y − 3z = 2. The point Q(1, 2, 3) is not on the plane P, the point R is on the plane P, and the line L1 through Q and R is orthogonal to the plane P. Let W be another point (1, 1, 3). Find parametric equations of the line L2 that passes through points W and R.
Find an equation of the plane. The plane that passes through the point (−1, 1, 3)...
Find an equation of the plane. The plane that passes through the point (−1, 1, 3) and contains the line of intersection of the planes x + y − z = 4 and 3x − y + 4z = 3
1. Determine whether the lines are parallel, perpendicular or neither. (x-1)/2 = (y+2)/5 = (z-3)/4 and...
1. Determine whether the lines are parallel, perpendicular or neither. (x-1)/2 = (y+2)/5 = (z-3)/4 and (x-2)/4 = (y-1)/3 = (z-2)/6 2. A) Find the line intersection of vector planes given by the equations -2x+3y-z+4=0 and 3x-2y+z=-2 B) Given U = <2, -3, 4> and V= <-1, 3, -2> Find a. U . V b. U x V
Find an equation of the plane. The plane that passes through the line of intersection of...
Find an equation of the plane. The plane that passes through the line of intersection of the planes x − z = 2 and y + 3z = 1 and is perpendicular to the plane x + y − 3z = 3
Find an equation of the plane. The plane that passes through the point (−3, 3, 2)...
Find an equation of the plane. The plane that passes through the point (−3, 3, 2) and contains the line of intersection of the planes x + y − z = 2 and 2x − y + 4z = 1
Find the line intersection and the angle between the planes 3x-2y+z=1 and 2x+y-3z=3.
Find the line intersection and the angle between the planes 3x-2y+z=1 and 2x+y-3z=3.
Find an equation for each of the following planes. Use x, y and z as the...
Find an equation for each of the following planes. Use x, y and z as the variables. a) An equation of the plane passing through the points (1,−1,1), (0,−2,−1) and (−4,0,6) b) An equation of the plane consisting of all points that are equidistant (equally far) from (−3,−5,−1) and (4,−1,−3) c) An equation of the plane containing the line x(t)= [0, -1, 1] + t[0, 4, -1] and is perpendicular to the plane 3y − 4z = −7
a. Determine an equation of the line of intersection of the planes 4x − 3y −...
a. Determine an equation of the line of intersection of the planes 4x − 3y − z = 1 and 2x + 4y + z = 5. b. Find the scalar equation for the plane through (5, −2, 3) and perpendicular to that line of intersection.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT