Question

Find an equation for each of the following planes. Use x, y and z as the...

Find an equation for each of the following planes. Use x, y and z as the variables.

a) An equation of the plane passing through the points (1,−1,1), (0,−2,−1) and (−4,0,6)

b) An equation of the plane consisting of all points that are equidistant (equally far) from (−3,−5,−1) and (4,−1,−3)

c) An equation of the plane containing the line x(t)= [0, -1, 1] + t[0, 4, -1] and is perpendicular to the plane 3y − 4z = −7

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Solve all three: a. Determine whether the plane 2x + y + 3z – 6...
1. Solve all three: a. Determine whether the plane 2x + y + 3z – 6 = 0 passes through the points (3,6,-2) and (-1,5,-1) b. Find the equation of the plane that passes through the points (2,2,1) and (-1,1,-1) and is perpendicular to the plane 2x - 3y + z = 3. c. Determine whether the planes are parallel, orthogonal, or neither. If they are neither parallel nor orthogonal, find the angle of intersection: 3x + y - 4z...
. Find the intersection of the planes x − y + 5z = 9 and x...
. Find the intersection of the planes x − y + 5z = 9 and x = 1 + s − t y = 1 +2 s − t z = 2 − s + t . (a) Find the line ℓ1 perpendicular to the first of these planes and passing across the point (1, 2, 2). (b) Find a line ℓ2 perpendicular to the second of these planes and passing across the point (1, 2, 2). (c) Find the...
a. Determine an equation of the line of intersection of the planes 4x − 3y −...
a. Determine an equation of the line of intersection of the planes 4x − 3y − z = 1 and 2x + 4y + z = 5. b. Find the scalar equation for the plane through (5, −2, 3) and perpendicular to that line of intersection.
Find an equation of the plane. The plane that passes through the point (−1, 1, 3)...
Find an equation of the plane. The plane that passes through the point (−1, 1, 3) and contains the line of intersection of the planes x + y − z = 4 and 3x − y + 4z = 3
1) Find an equation of the plane. The plane through the point (7, 0, 4)and perpendicular...
1) Find an equation of the plane. The plane through the point (7, 0, 4)and perpendicular to the line x = 3t,y = 3 − t,z = 1 + 7t 2) Consider the following planes.x + y + z = 2, x + 6y + 6z = 2 (a) Find parametric equations for the line of intersection of the planes. (Use the parameter t.) (x(t), y(t), z(t)) = (b)Find the angle between the planes. (Round your answer to one decimal...
Consider the following planes. x + y + z = 1,     x + 3y + 3z =...
Consider the following planes. x + y + z = 1,     x + 3y + 3z = 1 (a) Find parametric equations for the line of intersection of the planes. (Use the parameter t.) (x(t), y(t), z(t)) =       (b) Find the angle between the planes. (Round your answer to one decimal place.) °
Find an equation of the plane. The plane that passes through the point (−3, 3, 2)...
Find an equation of the plane. The plane that passes through the point (−3, 3, 2) and contains the line of intersection of the planes x + y − z = 2 and 2x − y + 4z = 1
Find an equation of a sphere with the given radius r and center C. (Use (x,...
Find an equation of a sphere with the given radius r and center C. (Use (x, y, z) for the coordinates.) r = 7;    C(3, −5, 2) Find the angle between u and v, rounded to the nearest tenth degree. u = j + k,   v = i + 2j − 5k Find the angle between u and v, rounded to the nearest tenth degree. u = i + 4j − 8k,   v = 3i − 4k Find a vector that...
Find an equation of the plane. The plane that passes through the line of intersection of...
Find an equation of the plane. The plane that passes through the line of intersection of the planes x − z = 2 and y + 3z = 1 and is perpendicular to the plane x + y − 3z = 3
Find the angle between the planes 15x−25y+z=−18 and 9x+3y+19z=−6. Round to the nearest degree, and do...
Find the angle between the planes 15x−25y+z=−18 and 9x+3y+19z=−6. Round to the nearest degree, and do not include the degree symbol in your answer. Find the parametric equations for the line segment between the points P(−3,5,9) and Q=(4,−7,2) so that the line segment extends from P at t=0 to Q at t=1. Enter the three coordinate equations in the form x=f(t), y=g(t), z=h(t). Find an equation of the sphere that has center C(2,4,5) and is tangent to the xy-plane. Find...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT