Question

Use Stokes' Theorem to evaluate   ∫ C F · dr  where F  =  (x + 5z) ...

Use Stokes' Theorem to evaluate   ∫ C F · dr  where F  =  (x + 5z) i  +  (3x + y) j  +  (4y − z) k   and C is the curve of intersection of the plane  x + 2y + z  =  16  with the coordinate planes

Homework Answers

Answer #1

if it is right than like it please give rating

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use Stokes' Theorem to evaluate   ∫ C F · dr  where F  =  (x + 8z) ...
Use Stokes' Theorem to evaluate   ∫ C F · dr  where F  =  (x + 8z) i  +  (6x + y) j  +  (7y − z) k   and C is the curve of intersection of the plane  x + 3y + z  =  24  with the coordinate planes. (Assume that C is oriented counterclockwise as viewed from above.) Please explain steps. Thank you:)
Use Stokes' Theorem to evaluate C F · dr where C is oriented counterclockwise as viewed...
Use Stokes' Theorem to evaluate C F · dr where C is oriented counterclockwise as viewed from above. F(x, y, z) = 5yi + xzj + (x + y)k, C is the curve of intersection of the plane z = y + 7 and the cylinder x2 + y2 = 1.
Use Stokes' Theorem to evaluate ∫ C F ⋅ dr. In each case C is oriented...
Use Stokes' Theorem to evaluate ∫ C F ⋅ dr. In each case C is oriented counterclockwise as viewed from above. F ( x , y , z ) = e − x ˆ i + e x ˆ j + e z ˆ k C is the boundary of the part of the plane 2 x + y + 2 z = 2 in the first octant ∫ C F ⋅ d r =
Use Stokes" Theorem to evaluate (F-dr where F(x, y, z)=(-y , x-z , 0) and the...
Use Stokes" Theorem to evaluate (F-dr where F(x, y, z)=(-y , x-z , 0) and the surface S is the part of the paraboloid : z = 4- x^2 - y^2 that lies above the xy-plane. Assume C is oriented counterclockwise when viewed from above.
Use Stokes' Theorem to evaluate    C F · dr where C is oriented counterclockwise as...
Use Stokes' Theorem to evaluate    C F · dr where C is oriented counterclockwise as viewed from above. F(x, y, z) = yzi + 6xzj + exyk, C is the circle x2 + y2 = 9, z = 2.
Use Divergence theorem to evaluate surface integral S F ·n dA where S is the surface...
Use Divergence theorem to evaluate surface integral S F ·n dA where S is the surface of the solid enclosed by the tetrahedron formed by the coordinate planes x = 0, y = 0 and z = 0 and the plane 2x + 2y + z = 6 and F = 2x i − x^2 j + (z − 2x + 2y) k.
Use Stokes' Theorem to evaluate the integral ∮CF⋅dr=∮C8z^2dx+8xdy+2y^3dz where C is the circle x^2+y^2=9 in the...
Use Stokes' Theorem to evaluate the integral ∮CF⋅dr=∮C8z^2dx+8xdy+2y^3dz where C is the circle x^2+y^2=9 in the plane z=0 .
Evaluate∫ C F ⋅ d r , where F(x,y,z)={e^−4x,e^2x,1e^z} and C is the boundary of the...
Evaluate∫ C F ⋅ d r , where F(x,y,z)={e^−4x,e^2x,1e^z} and C is the boundary of the part of the plane 3x+7y+5z=3 lying in the first octant, traversed counterclockwise as viewed from above. HINT: Use Stokes' Theorem.
Use the Divergence Theorem to evaluate F.N dS and find the outward flux of F through...
Use the Divergence Theorem to evaluate F.N dS and find the outward flux of F through the surface of the solid bounded by the graphs of the equations. F(x, y, z) = xi + xyj + zk Q: solid region bounded by the coordinate planes and the plane 3x + 4y + z = 24
Use the Divergence Theorem to evaluate S F · N dS and find the outward flux...
Use the Divergence Theorem to evaluate S F · N dS and find the outward flux of F through the surface of the solid bounded by the graphs of the equations. F(x, y, z) = x2i + xyj + zk Q: solid region bounded by the coordinate planes and the plane 3x + 4y + 6z = 24
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT