Question

Use Divergence theorem to evaluate surface integral S F ·n dA where S is the surface...

Use Divergence theorem to evaluate surface integral S F ·n dA where S is the surface of the solid enclosed by the tetrahedron formed by the coordinate planes x = 0, y = 0 and z = 0 and the plane 2x + 2y + z = 6 and F = 2x i − x^2 j + (z − 2x + 2y) k.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the Divergence Theorem to evaluate S F · N dS and find the outward flux...
Use the Divergence Theorem to evaluate S F · N dS and find the outward flux of F through the surface of the solid bounded by the graphs of the equations. F(x, y, z) = x2i + xyj + zk Q: solid region bounded by the coordinate planes and the plane 3x + 5y + 6z = 30
Use the Divergence Theorem to evaluate S F · N dS and find the outward flux...
Use the Divergence Theorem to evaluate S F · N dS and find the outward flux of F through the surface of the solid bounded by the graphs of the equations. F(x, y, z) = x2i + xyj + zk Q: solid region bounded by the coordinate planes and the plane 3x + 4y + 6z = 24
Use the Divergence Theorem to calculate the flux of ?F across ?S, where ?=??+??+??? F=zi+yj+zxk  and ?S...
Use the Divergence Theorem to calculate the flux of ?F across ?S, where ?=??+??+??? F=zi+yj+zxk  and ?S is the surface of the tetrahedron enclosed by the coordinate planes and the plane ?4+?4+?5=1
Use the Divergence Theorem to calculate the surface integral S F · dS; that is, calculate...
Use the Divergence Theorem to calculate the surface integral S F · dS; that is, calculate the flux of F across S. F(x, y, z) = ey tan(z)i + y 3 − x2 j + x sin(y)k, S is the surface of the solid that lies above the xy-plane and below the surface z = 2 − x4 − y4, −1 ≤ x ≤ 1, −1 ≤ y ≤ 1.
Use the Divergence Theorem to calculate the surface integral S F · dS; that is, calculate...
Use the Divergence Theorem to calculate the surface integral S F · dS; that is, calculate the flux of F across S. F(x, y, z) = x4i − x3z2j + 4xy2zk, S is the surface of the solid bounded by the cylinder x2 + y2 = 9 and the planes z = x + 4 and z = 0.
Use the Divergence Theorem to calculate the surface integral S F · dS; that is, calculate...
Use the Divergence Theorem to calculate the surface integral S F · dS; that is, calculate the flux of F across S. F(x, y, z) = exsin(y) i + excos(y) j + yz2k, S is the surface of the box bounded by the planes x = 0, x = 3, y = 0, y = 1,
Use Stokes' Theorem to evaluate the surface integral ∬ G curl F ⋅ n d S...
Use Stokes' Theorem to evaluate the surface integral ∬ G curl F ⋅ n d S where F ( x , y , z ) = ( z 2 − y ) i + ( x + y z ) j + x z k , G is the surface G = { ( x , y , z ) | z = 1 − x 2 − y 2 , z ≥ 0 } and n is the upward...
Evaluate the surface integral Evaluate the surface integral S F · dS for the given vector...
Evaluate the surface integral Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i + y j + 9 k S is the boundary of the region enclosed by the cylinder x2 + z2 = 1 and the planes y = 0 and x + y =...
Use the Divergence Theorem to evaluate F.N dS and find the outward flux of F through...
Use the Divergence Theorem to evaluate F.N dS and find the outward flux of F through the surface of the solid bounded by the graphs of the equations. F(x, y, z) = xi + xyj + zk Q: solid region bounded by the coordinate planes and the plane 3x + 4y + z = 24
Use Stokes' Theorem to evaluate   ∫ C F · dr  where F  =  (x + 5z) ...
Use Stokes' Theorem to evaluate   ∫ C F · dr  where F  =  (x + 5z) i  +  (3x + y) j  +  (4y − z) k   and C is the curve of intersection of the plane  x + 2y + z  =  16  with the coordinate planes