Question

Find the volume of the solid under the surface z = xy and above the triangle...

Find the volume of the solid under the surface z = xy and above the triangle with vertices (1, 1), (3, 1), and (1, 2).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the volume under the surface z=xy above the triangle with vertices (3,3,0), (8,3,0), (3,6,0).
Find the volume under the surface z=xy above the triangle with vertices (3,3,0), (8,3,0), (3,6,0).
find the volume of the solid below the surface z=2-square root ( 1+x2+y2)and above the xy-plane...
find the volume of the solid below the surface z=2-square root ( 1+x2+y2)and above the xy-plane can someone help with this I am in calculus 3 ( multivariable calculus)?
Find the volume of the solid that lies under the paraboloid z=2x2+2y2 above the xy-plane, and...
Find the volume of the solid that lies under the paraboloid z=2x2+2y2 above the xy-plane, and inside the cylinder x2+y2=8y
Use a triple integral to find the volume of the solid under the surfacez = x^2...
Use a triple integral to find the volume of the solid under the surfacez = x^2 yand above the triangle in the xy-plane with vertices (1.2) , (2,1) and (4, 0). a) Sketch the 2D region of integration in the xy plane b) find the limit of integration for x, y ,z c) solve the integral
Find the volume of the solid under the surface z = 5x + 2y 2 and...
Find the volume of the solid under the surface z = 5x + 2y 2 and above the region bounded by x = y 2 and x = y 3.
. Find the volume of the solid that is bounded above by the surface z =...
. Find the volume of the solid that is bounded above by the surface z = 1 − 2x 2 − y 2 − 2y and below by the region inside the the curve 2x 2 + y 2 + 2y = 1.
a) Find the volume of the region bounded by Z = (X2 + Y2)2 and Z...
a) Find the volume of the region bounded by Z = (X2 + Y2)2 and Z = 8 (Show all steps) b) Find the surface area of the portion of the surface z = X2 + Y2 which is inside the cylinder X2 + Y2 = 2 c) Find the surface area of the portion of the graph Z = 6X + 8Y which is above the triangle in the XY plane with vertices (0,0,0), (2,0,0), (0,4,0)
Find the volume of the solid that lies under the paraboloid z = x^2 + y^2...
Find the volume of the solid that lies under the paraboloid z = x^2 + y^2 , above the xy-plane and inside the cylinder x^2 + y^2 = 1.
Compute the surface area of the part of the surface z = y^2 above the triangle...
Compute the surface area of the part of the surface z = y^2 above the triangle with vertices (0,1,0), (1,0,0), and (1,1,0).
Find the volume under the plane 2x − 3y + 4z = 32 above the triangle...
Find the volume under the plane 2x − 3y + 4z = 32 above the triangle with vertices (1,0,0), (0,0,0), and (0,4,0).