Question

Use a triple integral to find the volume of the solid under the surfacez = x^2...

Use a triple integral to find the volume of the solid under the surfacez = x^2 yand above the triangle in the xy-plane with vertices (1.2) , (2,1) and (4, 0).

a) Sketch the 2D region of integration in the xy plane

b) find the limit of integration for x, y ,z

c) solve the integral

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the volume of the solid using triple integrals. The solid region Q cut from the...
Find the volume of the solid using triple integrals. The solid region Q cut from the sphere x^2+y^2+z^2=4 by the cylinder r=2sinϑ. Find and sketch the solid and the region of integration R. Setup the triple integral in Cartesian coordinates. Setup the triple integral in Spherical coordinates. Setup the triple integral in Cylindrical coordinates. Evaluate the iterated integral
Use triple integration to find the volume of the solid cylinder x^2 + y^2 = 9...
Use triple integration to find the volume of the solid cylinder x^2 + y^2 = 9 that lies above z = 0 and below x + z = 4.
Use a triple integral to find the volume of the given solid. The tetrahedron enclosed by...
Use a triple integral to find the volume of the given solid. The tetrahedron enclosed by the coordinate planes and the plane 11x + y + z = 2
Use a triple integral to find the volume of the given solid. The solid enclosed by...
Use a triple integral to find the volume of the given solid. The solid enclosed by the paraboloid x = 7y2 + 7z2 and the plane x = 12
Find the integral that represents: The volume of the solid under the cone z = sqrt(x^2...
Find the integral that represents: The volume of the solid under the cone z = sqrt(x^2 + y^2) and over the ring 4 ≤ x^2 + y^2 ≤ 25 The volume of the solid under the plane 6x + 4y + z = 12 and on the disk with boundary x2 + y2 = y. The area of ​​the smallest region, enclosed by the spiral rθ = 1, the circles r = 1 and r = 3 & the polar...
Use triple integral and find the volume of the solid E bounded by the paraboloid z...
Use triple integral and find the volume of the solid E bounded by the paraboloid z = 2x2 + 2y2 and the plane z = 8.
Calculate the volume with the triple integral by plotting the region between the x² + y²...
Calculate the volume with the triple integral by plotting the region between the x² + y² + z² = 4 sphere and the plane z = 1.
Find the volume of the solid that lies under the paraboloid z = x^2 + y^2...
Find the volume of the solid that lies under the paraboloid z = x^2 + y^2 , above the xy-plane and inside the cylinder x^2 + y^2 = 1.
1- Set up the triple integral for the volume of the sphere Q=8 in rectangular coordinates....
1- Set up the triple integral for the volume of the sphere Q=8 in rectangular coordinates. 2- Find the volume of the indicated region. the solid cut from the first octant by the surface z= 64 - x^2 -y 3- Write an iterated triple integral in the order dz dy dx for the volume of the region in the first octant enclosed by the cylinder x^2+y^2=16 and the plane z=10
Find the volume of the solid under the surface z = xy and above the triangle...
Find the volume of the solid under the surface z = xy and above the triangle with vertices (1, 1), (3, 1), and (1, 2).