Question

Find the shortest distance between the point (1, 4, 2) and the paraboloid described by z...

Find the shortest distance between the point (1, 4, 2) and the paraboloid described by z = x^2 + y^2 . Figure out a way to do this without having to deal with square roots.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the shortest distance from the point P = (−1, 2, 3) to the line of...
Find the shortest distance from the point P = (−1, 2, 3) to the line of inter- section of the planes x + 2y − 3z = 4 and 2x − y + 2z = 5.
Find the shortest distance between line L1: x = 1 + 2t, y = 3 -...
Find the shortest distance between line L1: x = 1 + 2t, y = 3 - 4t, z = 2 + t and L2: the intersection of the planes x + y + z =1 and 2x + y - 3z = 10
Let T be the plane 2x+y = −4. Find the shortest distance d from the point...
Let T be the plane 2x+y = −4. Find the shortest distance d from the point P0=(−1, −5, −1) to T, and the point Q in T that is closest to P0. Use the square root symbol '√' where needed to give an exact value for your answer.
The 2x + z = 1 plane when intersecting the paraboloid z = x ^ 2...
The 2x + z = 1 plane when intersecting the paraboloid z = x ^ 2 + y ^ 2 + 1 forms a circle. Find the largest distance of the points on the circle from the coordinate origin
a) Let T be the plane 3x-y-2z=9. Find the shortest distance d from the point P0...
a) Let T be the plane 3x-y-2z=9. Find the shortest distance d from the point P0 = (5, 2, 1) to T, and the point Q in T that is closest to P0. Use the square root symbol where needed. d= Q= ( , , ) b) Find all values of X so that the triangle with vertices A = (X, 4, 2), B = (3, 2, 0) and C = (2, 0 , -2) has area (5/2).
Find the volume of the region below the paraboloid z = 2 + x2 + (y...
Find the volume of the region below the paraboloid z = 2 + x2 + (y – 2)2 and above the hyperbolic paraboloid z = xy over the rectangle R = [–1, 1] ´ [1, 4].
Find the minimum distance from the point (1,-6,3) to the plane x − y + z...
Find the minimum distance from the point (1,-6,3) to the plane x − y + z = 7. (Hint: To simplify the computations, minimize the square of the distance.)
say that point (x, y, z) is the plane tangent to the paraboloid z = x...
say that point (x, y, z) is the plane tangent to the paraboloid z = x ^ 2 + 3y ^ 2 parallel to the plane z = x + y
Match each equation with its name. (calculus 3) (x/7)^2-(y/9)^2=z/4 (x/7)^2-y/9+(z/4)^2=0 −x/7+(y/9)^2+(z/4)^2=0 (x/7)^2+(y/9)^2=(z/4)^2 (x/7)^2+(y/7)^2+(z/7)^2=1 Hyperbolic paraboloid Elliptic...
Match each equation with its name. (calculus 3) (x/7)^2-(y/9)^2=z/4 (x/7)^2-y/9+(z/4)^2=0 −x/7+(y/9)^2+(z/4)^2=0 (x/7)^2+(y/9)^2=(z/4)^2 (x/7)^2+(y/7)^2+(z/7)^2=1 Hyperbolic paraboloid Elliptic paraboloid on x axis Cone on z axis Elliptic paraboloid on y axis Sphere
Find the average height of the paraboloid z=10x^2 + 7y^2 above the annular region 4<= x^2...
Find the average height of the paraboloid z=10x^2 + 7y^2 above the annular region 4<= x^2 + y^2 <= 9 in the xy-plane
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT