Question

Let T be the plane 2x+y = −4. Find the shortest distance d from the point...

Let T be the plane 2x+y = −4. Find the shortest distance d from the point P0=(−1, −5, −1) to T, and the point Q in T that is closest to P0. Use the square root symbol '√' where needed to give an exact value for your answer.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a) Let T be the plane 3x-y-2z=9. Find the shortest distance d from the point P0...
a) Let T be the plane 3x-y-2z=9. Find the shortest distance d from the point P0 = (5, 2, 1) to T, and the point Q in T that is closest to P0. Use the square root symbol where needed. d= Q= ( , , ) b) Find all values of X so that the triangle with vertices A = (X, 4, 2), B = (3, 2, 0) and C = (2, 0 , -2) has area (5/2).
Let L1 be the line passing through the point P1(?5, ?4, 5) with direction vector d=[?1,...
Let L1 be the line passing through the point P1(?5, ?4, 5) with direction vector d=[?1, 1, 3]T, and let L2 be the line passing through the point P2(4, 1, ?4) with the same direction vector. Find the shortest distance d between these two lines, and find a point Q1 on L1 and a point Q2 on L2 so that d(Q1,Q2) = d. Use the square root symbol '?' where needed to give an exact value for your answer. d=?...
Let L1 be the line passing through the point P1=(−5, −2, −5) with direction vector →d=[2,...
Let L1 be the line passing through the point P1=(−5, −2, −5) with direction vector →d=[2, −3, −2]T, and let L2 be the line passing through the point P2=(4, −1, −5) with the same direction vector. Find the shortest distance d between these two lines, and find a point Q1 on L1 and a point Q2 on L2 so that d(Q1,Q2) = d. Use the square root symbol '√' where needed to give an exact value for your answer.
Let L1 be the line passing through the point P1(3, 5, ?5) with direction vector d=[?1,...
Let L1 be the line passing through the point P1(3, 5, ?5) with direction vector d=[?1, 2, 0]T, and let L2 be the line passing through the point P2(?3, ?4, ?3) with the same direction vector. Find the shortest distance d between these two lines, and find a point Q1 on L1 and a point Q2 on L2 so that d(Q1,Q2) = d. Use the square root symbol '?' where needed to give an exact value for your answer.
Let L1 be the line passing through the point P1(?5, ?3, ?2) with direction vector d=[0,...
Let L1 be the line passing through the point P1(?5, ?3, ?2) with direction vector d=[0, ?3, ?2]T, and let L2 be the line passing through the point P2(?2, 3, ?3) with the same direction vector. Find the shortest distance d between these two lines, and find a point Q1 on L1 and a point Q2 on L2 so that d(Q1,Q2) = d. Use the square root symbol '?' where needed to give an exact value for your answer. d...
Find the shortest distance from the point P = (−1, 2, 3) to the line of...
Find the shortest distance from the point P = (−1, 2, 3) to the line of inter- section of the planes x + 2y − 3z = 4 and 2x − y + 2z = 5.
Let P be the plane given by the equation 2x + y − 3z = 2....
Let P be the plane given by the equation 2x + y − 3z = 2. The point Q(1, 2, 3) is not on the plane P, the point R is on the plane P, and the line L1 through Q and R is orthogonal to the plane P. Let W be another point (1, 1, 3). Find parametric equations of the line L2 that passes through points W and R.
Find the shortest distance between the point (1, 4, 2) and the paraboloid described by z...
Find the shortest distance between the point (1, 4, 2) and the paraboloid described by z = x^2 + y^2 . Figure out a way to do this without having to deal with square roots.
Find an equation for the plane that contains the line  v=(4,−4,−2)+t(3,−3,1) and is perpendicular to the plane...
Find an equation for the plane that contains the line  v=(4,−4,−2)+t(3,−3,1) and is perpendicular to the plane 2x+y+4z+1=0 (Use symbolic notation and fractions where needed. Please note that the solution expects you to solve for zz. You may need to scale your answer suitably. ) z = .
Find the minimum distance from the point (1,-6,3) to the plane x − y + z...
Find the minimum distance from the point (1,-6,3) to the plane x − y + z = 7. (Hint: To simplify the computations, minimize the square of the distance.)