Question

Use the figures below to evaluate the indicated derivative, or state that it does not exist....

Use the figures below to evaluate the indicated derivative, or state that it does not exist. If the derivative does not exist, enter dne in the answer blank. The graph to the left (in black) gives f(x), while the graph to the right gives g(x) (which is constant for values of x

greater than 20).

f(x)
g(x)



ddxf(g(x))|x=15=

Homework Answers

Answer #1

We know that d/dx f(g(x)) = f ’(g(x))*g’(x).

So, when x = 15, d/dx f(g(15)) = f ’(g(15))*g’(15)

Now g(15) can be evaluated as 27.5 because the graph of g(x) is part of the line y = .5x + 20 for x between 0 and 20. So let us substitute that in and see what we have got:

d/dx f(g(15)) =f ’(27.5)*g'(15)

Now in order to determine the values of the derivatives at these points, we need to recall that the derivative at a point is equal to the slope at that point. These slopes aren't changing in the immediate vicinity of x = 15 so it is easy enough to collect the value for f '(27) as equal to 1. Meanwhile on the graph of g(x), the slope at x = 15 is .5 so g'(15) = .5

Substituting again we get:

d/dx f(g(15)) = 1*.5 = .5

So the answer is .5

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) Use the First Derivative Test to find the local maximum and minimum values of the...
1) Use the First Derivative Test to find the local maximum and minimum values of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.): g(u) = 0.3u3 + 1.8u2 + 146 a) local minimum values:    b) local maximum values:    2) Consider the following: f(x) = x4 − 32x2 + 6 (a) Find the intervals on which f is increasing or decreasing. (Enter your answers using interval notation.) increasing:    decreasing:...
Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x4 −...
Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x4 − 8x2 + 7 (b) Find the local minimum and maximum values of f. (c) Find the interval on which f is concave up. (Enter your answer using interval notation.) (d) Find the interval on which f is concave down.(Enter your answer using interval notation.)
Let f(x)=7x^2+7. Evaluate lim h→0 f(−1+h)−f(−1)/h (If the limit does not exist, enter "DNE".) Limit =
Let f(x)=7x^2+7. Evaluate lim h→0 f(−1+h)−f(−1)/h (If the limit does not exist, enter "DNE".) Limit =
Consider the following. (If an answer does not exist, enter DNE.) f '(x) = x2 +...
Consider the following. (If an answer does not exist, enter DNE.) f '(x) = x2 + x − 30 (a) Find the open intervals on which f ′(x) is increasing or decreasing. (Enter your answers using interval notation.) increasing (−12​,∞) decreasing (−∞,−12​) (b) Find the open intervals on which the graph of f is concave upward or concave downward. (Enter your answers using interval notation.) concave upward concave downward (c) Find the x-values of the relative extrema of f. (Enter...
Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x^7ln(x) (a)...
Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x^7ln(x) (a) Find the interval on which f is increasing. (Enter your answer using interval notation.)    Find the interval on which f is decreasing. (Enter your answer using interval notation.)    (b) Find the local minimum and maximum values of f. local minimum value local maximum value (c) Find the inflection point. (x, y) =    Find the interval on which f is concave up....
Consider the function below. (If an answer does not exist, enter DNE.) g(x) = 250 +...
Consider the function below. (If an answer does not exist, enter DNE.) g(x) = 250 + 8x3 + x4 (a) Find the interval of increase. (Enter your answer using interval notation.) Find the interval of decrease. (Enter your answer using interval notation.) (b) Find the local minimum value(s). (Enter your answers as a comma-separated list.) Find the local maximum value(s). (Enter your answers as a comma-separated list.) (c) Find the inflection points. (x, y)=(smaller x-value) (x, y)=(larger x-value) Find the...
Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x^4− 50x^2...
Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x^4− 50x^2 + 7 (a) Find the interval on which f is increasing. (Enter your answer using interval notation.)    Find the interval on which f is decreasing. (Enter your answer using interval notation.)    (b) Find the local minimum and maximum values of f. local minimum value local maximum value (c) Find the inflection points. (x, y) =    (smaller x-value) (x, y) =   ...
Consider the function below. (If an answer does not exist, enter DNE.) f(x) = 1/2x^(4) −...
Consider the function below. (If an answer does not exist, enter DNE.) f(x) = 1/2x^(4) − 4x^(2) + 3 (a) Find the interval of increase. (Enter your answer using interval notation.) Find the interval of decrease. (Enter your answer using interval notation.) (b) Find the local minimum value(s). (Enter your answers as a comma-separated list.) Find the local maximum value(s). (Enter your answers as a comma-separated list.) (c) Find the inflection points. (x, y) = (smaller x-value) (x, y) =...
Consider the function below. (If an answer does not exist, enter DNE.) h(x) = (x +...
Consider the function below. (If an answer does not exist, enter DNE.) h(x) = (x + 1)9 − 9x − 3 (a) Find the interval of increase. (Enter your answer using interval notation.) Find the interval of decrease. (Enter your answer using interval notation.) (b) Find the local minimum value(s). (Enter your answers as a comma-separated list.) Find the local maximum value(s). (Enter your answers as a comma-separated list.) (c) Find the inflection point. (x, y) = Find the interval...
Use the shortcut rules to mentally calculate the derivative of the given function. HINT [See Examples...
Use the shortcut rules to mentally calculate the derivative of the given function. HINT [See Examples 1 and 2.] f(x) = 4x4 + 7x3 − 3 f '(x) = Use the shortcut rules to mentally calculate the derivative of the given function. HINT [See Examples 1 and 2.] f(x) = −x + (8/x) +1 f '(x) = Find the derivative of the function. HINT [See Examples 1 and 2.] f(x) = 8x3 − 4x2 + x f '(x) = Find...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT