Question

Use a Taylor series to solve y'(t)-6y=9, y(0)=2

Use a Taylor series to solve y'(t)-6y=9, y(0)=2

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use a Taylor series to solve y't-6y=9, y0=2
Use a Taylor series to solve y't-6y=9, y0=2
Solve the initial value problem 9(t+1) dy dt −6y=18t, 9(t+1)dydt−6y=18t, for t>−1 t>−1 with y(0)=14. y(0)=14....
Solve the initial value problem 9(t+1) dy dt −6y=18t, 9(t+1)dydt−6y=18t, for t>−1 t>−1 with y(0)=14. y(0)=14. Find the integrating factor, u(t)= u(t)= , and then find y(t)= y(t)=
use the laplace transform to solve the following equation y”-6y’+9y = (t^2)(e^(3t)) y(0)=2 y’(0)=17
use the laplace transform to solve the following equation y”-6y’+9y = (t^2)(e^(3t)) y(0)=2 y’(0)=17
Use the Laplace Transform to solve the following initial value problem: 11. y′′ −y′ −6y={0 for0<t<2;...
Use the Laplace Transform to solve the following initial value problem: 11. y′′ −y′ −6y={0 for0<t<2; e^t for t>2}, y(0)=3, y′(0)=4
solve this series 1. 2y'' - 3xy = 0 2. (x2+1)y'' - 4xy' + 6y =...
solve this series 1. 2y'' - 3xy = 0 2. (x2+1)y'' - 4xy' + 6y = 0
use Laplace transforms to solve the integral for y(t) y"-6y'+5y=(14-8t)e^t y(0)=3 y'(0)=-4
use Laplace transforms to solve the integral for y(t) y"-6y'+5y=(14-8t)e^t y(0)=3 y'(0)=-4
Use the laplace transform to solve for the initial value problem: y''+6y'+25y=delta(t-7) y(0)=0 y'(0)=0
Use the laplace transform to solve for the initial value problem: y''+6y'+25y=delta(t-7) y(0)=0 y'(0)=0
Solve the following differential equation using taylor series centered at x=0: (2+x^2)y''-xy'+4y = 0
Solve the following differential equation using taylor series centered at x=0: (2+x^2)y''-xy'+4y = 0
Solve the Initial Value Problem: dydx+2y=9,         y(0)=0 dydx+ycosx=5cosx,        y(0)=7d Find the general solution, y(t)y(t), which solves...
Solve the Initial Value Problem: dydx+2y=9,         y(0)=0 dydx+ycosx=5cosx,        y(0)=7d Find the general solution, y(t)y(t), which solves the problem below, by the method of integrating factors. 8tdydt+y=t3,t>08tdydt+y=t3,t>0 Put the problem in standard form. Then find the integrating factor, μ(t)=μ(t)=  ,__________ and finally find y(t)=y(t)= __________ . (use C as the unkown constant.) Solve the following initial value problem: tdydt+6y=7ttdydt+6y=7t with y(1)=2.y(1)=2. Put the problem in standard form. Then find the integrating factor, ρ(t)=ρ(t)= _______ , and finally find y(t)=y(t)= _________ .
Solve the differential equation: a) y'= t^2y^3 / t^3+6 b) y'= x(e^x^2 +2) / 6y^2 ;...
Solve the differential equation: a) y'= t^2y^3 / t^3+6 b) y'= x(e^x^2 +2) / 6y^2 ; y(0) =1
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT