Question

The region bounded by y=2^x and y=4x-4 is rotated about the line y=3. Find the volume...

The region bounded by y=2^x and y=4x-4 is rotated about the line y=3. Find the volume of the resulting solid.

Homework Answers

Answer #1

Please comment if you have any doubt.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. The region bounded by y=x8 and y=sin(πx/2) is rotated about the line x=−7. Using cylindrical...
1. The region bounded by y=x8 and y=sin(πx/2) is rotated about the line x=−7. Using cylindrical shells, set up an integral for the volume of the resulting solid. 2.The region bounded by y=9/(1+x2), y=0, x=0 and x=8 is rotated about the line x=8. Using cylindrical shells, set up an integral for the volume of the resulting solid.
The region bounded by the given curves is rotated about the specified axis. Find the volume...
The region bounded by the given curves is rotated about the specified axis. Find the volume V of the resulting solid by any method. x = (y − 9)2,    x = 16;    about y = 5 V =
The region in the first quadrant bounded by y=2x^2 , 4x+y=6, and the y-axis is rotate...
The region in the first quadrant bounded by y=2x^2 , 4x+y=6, and the y-axis is rotate about the line x=−3. The volume of the resulting solid is:
consider the region r bounded by the parabola y=4x^2 and the lines x=0 and y=16 find...
consider the region r bounded by the parabola y=4x^2 and the lines x=0 and y=16 find the volume of the solid obtained by revolving R about the line x=1
3. Find the volume of the solid of revolution. The region is bounded by y= 4x...
3. Find the volume of the solid of revolution. The region is bounded by y= 4x and y = x^3 and x ≥ 0. a) Make a sketch. b) About the x axis (disk/washer method). c) About the x axis (cylindrical shells). d) About the y axis (disk/washer method). e) About the y axis (cylindrical shells).
Consider the region bounded by y=2x and y=x^2. Rotate it about the Y-axis. Find the volume...
Consider the region bounded by y=2x and y=x^2. Rotate it about the Y-axis. Find the volume of the resulting solid.
40) The region bounded by f(x)=−2x^2+12x+32, x=0 and y=0 is rotated about the y-axis. Find the...
40) The region bounded by f(x)=−2x^2+12x+32, x=0 and y=0 is rotated about the y-axis. Find the volume of the solid of revolution. Find the exact value; write answers without decimals.
1) A volume is described as follows: 1. the base is the region bounded by y=2−2/25x^2...
1) A volume is described as follows: 1. the base is the region bounded by y=2−2/25x^2 and y=0 2. every cross-section parallel to the x-axis is a triangle whose height and base are equal. Find the volume of this object. volume = 2) The region bounded by f(x)=−4x^2+24x+108, x=0, and y=0 is rotated about the y-axis. Find the volume of the solid of revolution. Find the exact value; write answer without decimals.
Find the volume of the solid generated by revolving the region bounded by y = sqrt(x)...
Find the volume of the solid generated by revolving the region bounded by y = sqrt(x) and the lines and about y=2 and x=0 about: 1) the x-axis. 2) the y-axis. 3) the line y=2. 4) the line x=4.
What is the volume of the solid obtained by rotating the region bounded by the curves...
What is the volume of the solid obtained by rotating the region bounded by the curves y = −x^2 + 4x − 3 and y = 0 rotated about the y-axis?