Question

1. The region bounded by y=x8 and y=sin(πx/2) is rotated about the line x=−7. Using cylindrical...

1. The region bounded by y=x8 and y=sin(πx/2) is rotated about the line x=−7.
Using cylindrical shells, set up an integral for the volume of the resulting solid.

2.The region bounded by y=9/(1+x2), y=0, x=0 and x=8 is rotated about the line x=8.
Using cylindrical shells, set up an integral for the volume of the resulting solid.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The region is bounded by y = 2 − x^ 2 and y = x Use...
The region is bounded by y = 2 − x^ 2 and y = x Use the method of cylindrical shells to set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region about the line x = −3
The region is bounded by y=2−x^2 and y=x. (a) Sketch the region. (b) Find the area...
The region is bounded by y=2−x^2 and y=x. (a) Sketch the region. (b) Find the area of the region. (c) Use the method of cylindrical shells to set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region about the line x = −3. (d) Use the disk or washer method to set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region about...
The region bounded by y=2^x and y=4x-4 is rotated about the line y=3. Find the volume...
The region bounded by y=2^x and y=4x-4 is rotated about the line y=3. Find the volume of the resulting solid.
Set up an integral to find the volume of the solid generated when the region bounded...
Set up an integral to find the volume of the solid generated when the region bounded by y = square root(x) and y = (1/2)x is (a) Rotated about the x-axis using washers (b) Rotated about the line x = −4 using washers (c) Rotated about the line y = 5 using shells
Consider the region bounded by y = sin x and y = − sin x from...
Consider the region bounded by y = sin x and y = − sin x from x = 0 to x = π. a) Draw the solid obtained by rotating this region about the line x = 2π. b) Which method (washers or shells) is preferable for finding the volume of this solid? Explain. c) Determine the volume of the solid
a.) Let S be the solid obtained by rotating the region bounded by the curves y=x(x−1)^2...
a.) Let S be the solid obtained by rotating the region bounded by the curves y=x(x−1)^2 and y=0 about the y-axis. If you sketch the given region, you'll see that it can be awkward to find the volume V of S by slicing (the disk/washer method). Use cylindrical shells to find V b.) Consider the curve defined by the equation xy=12. Set up an integral to find the length of curve from x=a to x=b. Enter the integrand below
2. Set up an integral to find the volume of the solid generated when the region...
2. Set up an integral to find the volume of the solid generated when the region bounded by y = 2x2 and y = x3 is (a) Rotated about the x-axis using shells (b) Rotated about the x-axis using washers (c) Rotated about the y-axis using shells (d) Rotated about the y-axis using washers (e) Rotated about the line x = −3 (f) Rotated about the line y = −2 (g) Rotated about the line y = 11 (h) Rotated...
Problem (9). Let R be the region enclosed by y = 2x, the x-axis, and x...
Problem (9). Let R be the region enclosed by y = 2x, the x-axis, and x = 2. Draw the solid and set-up an integral (or a sum of integrals) that computes the volume of the solid obtained by rotating R about: (a) the x-axis using disks/washers (b) the x-axis using cylindrical shells (c) the y-axis using disks/washer (d) the y-axis using cylindrical shells (e) the line x = 3 using disks/washers (f) the line y = 4 using cylindrical...
et S be the solid obtained by rotating the region bounded by the curves ?=sin(?2) and...
et S be the solid obtained by rotating the region bounded by the curves ?=sin(?2) and ?=0 with 0≤?≤root(?) about the ?y-axis. Use cylindrical shells to find the volume of S. Volume =
Find the volume V of the solid obtained by rotating the region bounded by the given...
Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line. y = 5x4,   y = 5x,   x ≥ 0;    about the x-axis Find the area of the region enclosed by the given curves. y = 3 cos(πx),    y = 12x2 − 3 Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line. 2x = y2,  x = 0,  y = 5;  about the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT