Question

for what values of k, if any, is the transformation T(x,y) = 3y + k linear?

for what values of k, if any, is the transformation T(x,y) = 3y + k linear?

Homework Answers

Answer #1

A linear transformation between two vector spaces and is a map such that the following hold:

1. for any vectors and in , and

2. for any scalar .

So, applying the first condition on the given function T, we have

But, we have

From equations (1) and (2), we have

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the matrix A in the linear transformation y = Ax,where a point x = [x1,x2]^T...
Find the matrix A in the linear transformation y = Ax,where a point x = [x1,x2]^T is projected on the x2 axis.That is,a point x = [x1,x2]^T is projected on to [0,x2]^T . Is A an orthogonal matrix ?I any case,find the eigen values and eigen vectors of A .
Determine whether or not the transformation T is linear. If the transformation is linear, find the...
Determine whether or not the transformation T is linear. If the transformation is linear, find the associated representation matrix (with respect to the standard basis). (a) T ( x , y ) = ( y , x + 2 ) (b) T ( x , y ) = ( x + y , 0 )
A linear transformation T : Rn → Rn is an orthogonal transformation if and only if...
A linear transformation T : Rn → Rn is an orthogonal transformation if and only if T(x)⋅T(y) = x ⋅y for all vectors x and y in Rn. True or false?
(a) Let T be any linear transformation from R2 to R2 and v be any vector...
(a) Let T be any linear transformation from R2 to R2 and v be any vector in R2 such that T(2v) = T(3v) = 0. Determine whether the following is true or false, and explain why: (i) v = 0, (ii) T(v) = 0. (b) Find the matrix associated to the geometric transformation on R2 that first reflects over the y-axis and then contracts in the y-direction by a factor of 1/3 and expands in the x direction by a...
let let T : R^3 --> R^2 be a linear transformation defined by T ( x,...
let let T : R^3 --> R^2 be a linear transformation defined by T ( x, y , z) = ( x-2y -z , 2x + 4y - 2z) a give an example of two elements in K ev( T ) and show that these sum i also an element of K er( T)
Consider the transformation T: R2 -> R3 defined by T(x,y) = (x-y,x+y,x+2y) Answer the Following a)Find...
Consider the transformation T: R2 -> R3 defined by T(x,y) = (x-y,x+y,x+2y) Answer the Following a)Find the Standard Matrix A for the linear transformation b)Find T([1 -2]) c) determine if c = [0 is in the range of the transformation T 2 3] Please explain as much as possible this is a test question that I got no points on. Now studying for the final and trying to understand past test questions.
Let the linear transformation T: V--->W be such that T (u) = u2 If a, b...
Let the linear transformation T: V--->W be such that T (u) = u2 If a, b are Real. Find T (au + bv) , if u = (x, y) v = (z, w) and uv = (xz-yw, xw + yz) Let the linear transformation T: V---> W be such that T (u) = T (x, y) = (xy, 0) where u = (x, y), with 2, -3. Then, if u = ( 1.0) and v = (0.1). Find the value...
Verify that the function ϕ(t)=c1e^−t+c2e^−2t is a solution of the linear equation y′′+3y′+2y=0 for any choice...
Verify that the function ϕ(t)=c1e^−t+c2e^−2t is a solution of the linear equation y′′+3y′+2y=0 for any choice of the constants c1c1 and c2c2. Determine c1c1 and c2c2 so that each of the following initial conditions is satisfied: (a) y(0)=−1,y′(0)=4 (b) y(0)=2,y′(0)=0
Find all functions x(t),y(t) satisfying x'(t) = y(t) - x(t) y'(t) = 3x(t) - 3y(t) Find...
Find all functions x(t),y(t) satisfying x'(t) = y(t) - x(t) y'(t) = 3x(t) - 3y(t) Find the particular pair of functions satisfying x(0) = y(0) = 1/2.
(12) (after 3.3) (a) Find a linear transformation T : R2 → R2 such that T...
(12) (after 3.3) (a) Find a linear transformation T : R2 → R2 such that T (x) = Ax that reflects a vector (x1, x2) about the x2-axis. (b) Find a linear transformation S : R2 → R2 such that T(x) = Bx that rotates a vector (x1, x2) counterclockwise by 135 degrees. (c) Find a linear transformation (with domain and codomain) that has the effect of first reflecting as in (a) and then rotating as in (b). Give the...