Question

Trapezoid ABCD has ∠BAD = ∠ADC = 90◦ , AB = x, and DC = y...

Trapezoid ABCD has ∠BAD = ∠ADC = 90◦ , AB = x, and DC = y with x < y. Diagonals AC and BD intersect at X. Point L is on AD and point M is on BC so that LM is parallel to AB and LM passes through X. Determine the length of LM in terms of x and y.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In the rectangle ABCD, AB = 6 and BC = 8. The diagonals AC and BD...
In the rectangle ABCD, AB = 6 and BC = 8. The diagonals AC and BD intersect at O. Point P lies on the diagonal AC such that AP = 1. A line is drawn from B through P and meets AD at S. Let be R a point on AD such that OR is parallel to BS. a) Find the lengths of AS and RD. Hint: Denote AS = x. Use P S k OR and OR k BS...
Consider a quadrilateral ABCD such that ∠BAD and ∠ADC are perpendicular, the rays AB and CD...
Consider a quadrilateral ABCD such that ∠BAD and ∠ADC are perpendicular, the rays AB and CD are on the same side of the line AD, and AB ≅ CD. Prove the following claims on E2, H2, and S2. ∠ABC ≅ ∠DCB. the perpendicular bisector of AD is also the perpendicular bisector of BC. Hint: Look for symmetries.
Consider a quadrilateral ABCD such that ∠BAD and ∠ADC are perpendicular, the rays AB and CD...
Consider a quadrilateral ABCD such that ∠BAD and ∠ADC are perpendicular, the rays AB and CD are on the same side of the line AD, and AB ≅ CD. Quadrilaterals with these properties are called Khayyam quadrilaterals Prove the following claims on E2, H2, and S2. ∠ABC ≅ ∠DCB. the perpendicular bisector of AD is also the perpendicular bisector of BC. Hint: Look for symmetries.
5. Suppose that the incenter I of ABC is on the triangle’s Euler line. Show that...
5. Suppose that the incenter I of ABC is on the triangle’s Euler line. Show that the triangle is isosceles. 6. Suppose that three circles of equal radius pass through a common point P, and denote by A, B, and C the three other points where some two of these circles cross. Show that the unique circle passing through A, B, and C has the same radius as the original three circles. 7. Suppose A, B, and C are distinct...