Question

In the rectangle ABCD, AB = 6 and BC = 8. The diagonals AC and BD...

In the rectangle ABCD, AB = 6 and BC = 8. The diagonals AC and BD intersect at O. Point P lies on the diagonal AC such that AP = 1. A line is drawn from B through P and meets AD at S. Let be R a point on AD such that OR is parallel to BS. a) Find the lengths of AS and RD. Hint: Denote AS = x. Use P S k OR and OR k BS to find AR and RD in terms of x. Then, find the value of x. b) Find the areas of 4AOD and 4COD. c) Find the areas of 4AOS and 4AP S. Hint: Consider that 4AOS and 4AOD have the same altitude. Use 4AP S ∼ 4AOR

let k= area and 4=triangle

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let ABCD be a rectangle with AB = 4 and BC = 1. Denote by M...
Let ABCD be a rectangle with AB = 4 and BC = 1. Denote by M the midpoint of line segment AD and by P the leg of the perpendicular from B onto CM. a) Find the lengths of P B and PM. b) Find the area of ABPM. c) Consider now ABCD being a parallelogram. Denote by M the midpoint of side AD and by P the leg of the perpendicular from B onto CM. Prove that AP =...
Trapezoid ABCD has ∠BAD = ∠ADC = 90◦ , AB = x, and DC = y...
Trapezoid ABCD has ∠BAD = ∠ADC = 90◦ , AB = x, and DC = y with x < y. Diagonals AC and BD intersect at X. Point L is on AD and point M is on BC so that LM is parallel to AB and LM passes through X. Determine the length of LM in terms of x and y.
Let ABCD be a cyclic quadrilateral, and let the diagonals meet in point S. From S,...
Let ABCD be a cyclic quadrilateral, and let the diagonals meet in point S. From S, draw perpendiculars to the four sides, with feet L on AB, M on BC, N on CD and K on DA. This gives a new quadrilateral LM N K. Prove that the sum of two opposite angles in this new quadrilateral is double the corresponding angle at the intersection S. (E.g.∠L+∠N= 2∠ASB). Hint: Find four smaller cyclic quadrilaterals in the diagram.
ABC is a right-angled triangle with right angle at A, and AB > AC. Let D...
ABC is a right-angled triangle with right angle at A, and AB > AC. Let D be the midpoint of the side BC, and let L be the bisector of the right angle at A. Draw a perpendicular line to BC at D, which meets the line L at point E. Prove that (a) AD=DE; and (b) ∠DAE=1/2(∠C−∠B) Hint: Draw a line from A perpendicular to BC, which meets BC in the point F
5. Suppose that the incenter I of ABC is on the triangle’s Euler line. Show that...
5. Suppose that the incenter I of ABC is on the triangle’s Euler line. Show that the triangle is isosceles. 6. Suppose that three circles of equal radius pass through a common point P, and denote by A, B, and C the three other points where some two of these circles cross. Show that the unique circle passing through A, B, and C has the same radius as the original three circles. 7. Suppose A, B, and C are distinct...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT