Question

Let f(x) = x3 + 3x2 − 9x − 27 . The first and second derivatives...

Let f(x) = x3 + 3x2 − 9x − 27 . The first and second derivatives of f are given below.

f(x) = x3 + 3x2− 9x − 27 = (x − 3)(x + 3)2

f '(x) = 3x2 + 6x − 9 = 3(x − 1)(x + 3)

f ''(x) = 6x + 6 = 6(x + 1)

a.) Find the x-intercepts on the graph of f.

b.)Find the critical points of f.

c.) Identify the possible inflection points of f.

d.) Determine the location and value of any local maxima and local minima of f, if they exist.

e.) Determine the end behavior and locate any horizontal asymptotes on the graph of f if they exist.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given the function f(x) = x3 - 3x2 - 9x + 10 Find the intervals where...
Given the function f(x) = x3 - 3x2 - 9x + 10 Find the intervals where it is increasing and decreasing and find the co-ordinates of the relative maximums & minimums. Find the intervals where it is concave up and down and co-ordinates of any inflection points Graph the f(x) 
Consider the function f(x) = −x3 + 4x2 + 7x + 1. (a) Use the first...
Consider the function f(x) = −x3 + 4x2 + 7x + 1. (a) Use the first and second derivative tests to determine the intervals of increase and decrease, the local maxima and minima, the intervals of concavity, and the points of inflection. (b) Use your work in part (a) to compute a suitable table of x-values and corresponding y-values and carefully sketch the graph of the function f(x). In your graph, make sure to indicate any local extrema and any...
Consider the function f(x)= x3 x2 − 4 Express the domain of the function in interval...
Consider the function f(x)= x3 x2 − 4 Express the domain of the function in interval notation: Find the y-intercept: y= . Find all the x-intercepts (enter your answer as a comma-separated list): x= . On which intervals is the function positive? On which intervals is the function negative? Does f have any symmetries? f is even;f is odd;    f is periodic;None of the above. Find all the asymptotes of f (enter your answers as equations): Vertical asymptote (left): ; Vertical...
f(x) = x3 – 3x2 + 10 Domain: ________________________________ Range: ________________________________ x-int: ______________ y-int: ______________ Maxima:...
f(x) = x3 – 3x2 + 10 Domain: ________________________________ Range: ________________________________ x-int: ______________ y-int: ______________ Maxima: _______________________________ Minima: ________________________________ Increasing: _____________________________ Decreasing: _____________________________ Constant: ______________________________ End Behavior: ___________________________ Discontinuities: __________________________ Asymptote: _____________________________ Symmetry: _____________________________Graph: f(t) = 2t4 – 10t2 + 12.5t Domain: ________________________________ : Range: ________________________________ x-int: ______________ y-int: ______________ Maxima: _______________________________ Minima: ________________________________ Increasing: _____________________________ Decreasing: _____________________________ Constant: ______________________________ End Behavior: ___________________________ Discontinuities: __________________________ Asymptote: _____________________________ Symmetry: _____________________________Graph: f(x) = 2x4 – 6x2 + 4.5 Domain: ________________________________ : Range:...
Let f(x) = x3 + 3x2 - 24x - 10 a) Find the intervals on which...
Let f(x) = x3 + 3x2 - 24x - 10 a) Find the intervals on which f is increasing/decreasing, and find all local maximum and local minimum values of f. b) Find all intervals on which f is concave up/concave down, and find all inflection points of f.
Given f(x)= x3 - 6x2-15x+30 Determine f ’(x) Define “critical point” of a function. Then determine...
Given f(x)= x3 - 6x2-15x+30 Determine f ’(x) Define “critical point” of a function. Then determine the critical points of f(x). Use the sign of f ’(x) to determine the interval(s) on which the function is increasing and the interval(s) on which it is decreasing. Use the results from (c) to determine the location and values (x and y-values of the relative maxima and the relative minima of f(x). Determine f ’’(x) On which intervals is the graph of f(x)...
Consider the function f(x)=ln(x2 +4)[6+6+8=16 marks] Note: f'(x) = 2x divided by (x2 +4) f''(x )...
Consider the function f(x)=ln(x2 +4)[6+6+8=16 marks] Note: f'(x) = 2x divided by (x2 +4) f''(x ) = 2(4-x2) divided by (x2+4)2 (I was unable to put divide sign) a) On which intervals is increasing or decreasing? b) On which intervals is concave up or down? c) Sketch the graph of f(x) Label any intercepts, asymptotes, relative minima, relative maxima and inflection points.
Given f(x) = , f′(x) = and f′′(x) = , find all possible x2 x3 x4...
Given f(x) = , f′(x) = and f′′(x) = , find all possible x2 x3 x4 intercepts, asymptotes, relative extrema (both x and y values), intervals of increase or decrease, concavity and inflection points (both x and y values). Use these to sketch the graph of f(x) = 20(x − 2) . x2
Let f(x)=(x^2)/(x-2) Find the following a) Domain of f b) Intercepts (approximate to the nearest thousandth)...
Let f(x)=(x^2)/(x-2) Find the following a) Domain of f b) Intercepts (approximate to the nearest thousandth) c) Symmetry (Show testing for symmetry) d) asymptotes e) Intervals of increase/decrease (approximate the critical numbers to the nearest thousandth. Be sure to show the values tested) f) Local maxima and local minima g) Intervals of concavity and points of inflection (be sure to show all testing) h) summary for f(x)=(x^2)/(x-2) Domain X intercepts: Y intercept: symmetry: asymptote: increasing: decreasing: local max: local min:...
Consider the function f(x)=ln(x2 +4)[6+6+8=16 marks] Note: f'(x) = 2x divided by (x2 +4) f''(x )...
Consider the function f(x)=ln(x2 +4)[6+6+8=16 marks] Note: f'(x) = 2x divided by (x2 +4) f''(x ) = 2(4-x2) divided by (x2+4) (I was unable to put divide sign) a) On which intervals is increasing or decreasing? b) On which intervals is concave up or down? c) Sketch the graph of below. Label any intercepts, asymptotes, relative minima, relative maxima and inflection points. .
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT