Question

Given f(x)= x3 - 6x2-15x+30 Determine f ’(x) Define “critical point” of a function. Then determine...

Given f(x)= x3 - 6x2-15x+30

  1. Determine f ’(x)
  1. Define “critical point” of a function. Then determine the critical points of f(x).

  1. Use the sign of f ’(x) to determine the interval(s) on which the function is increasing and the interval(s) on which it is decreasing.

  1. Use the results from (c) to determine the location and values (x and y-values of the relative maxima and the relative minima of f(x).
  1. Determine f ’’(x)

  1. On which intervals is the graph of f(x) concave up? Concave down? Explain. Determine any points of inflection.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Analyze and sketch the graph of the function f(x) = (x − 4)2/3 (a) Determine the...
Analyze and sketch the graph of the function f(x) = (x − 4)2/3 (a) Determine the intervals on which f(x) is increasing / decreasing (b) Determine if any critical values correspond to a relative maxima / minima (c) Find possible inflection points (d) Determine intervals where f(x) is concave up / down
Given the function g(x) = x3-3x + 1, use the first and second derivative tests to...
Given the function g(x) = x3-3x + 1, use the first and second derivative tests to (a) Find the intervals where g(x) is increasing and decreasing. (b) Find the points where the function reaches all realtive maxima and minima. (c) Determine the intervals for which g(x) is concave up and concave down. (d) Determine all points of inflection for g(x). (e) Graph g(x). Label your axes, extrema, and point(s) of inflection.
given function f(x)=-x^3+5x^2-3x+2 A) Determine the intervals where F(x) Is increasing and decreasing b) use your...
given function f(x)=-x^3+5x^2-3x+2 A) Determine the intervals where F(x) Is increasing and decreasing b) use your answer from a to determine any relative maxima or minima of the function c) Find that intervals where f(x) is concave up and concave down and any points of inflection
a) If g(x) = x3−6x2 −15x + 7, find the interval(s) on which g is increasing/decreasing,...
a) If g(x) = x3−6x2 −15x + 7, find the interval(s) on which g is increasing/decreasing, and identify the location(s) of any local max/mins. Make a sign chart for g' b)  Suppose f(x) =(x2 −3)/(x2 + 3) [Note that x2 + 3 > 0 for all x.] Using the fact that f''(x) = −36(x2 −1)/(x2 + 3)3 find the interval(s) on which f is concave up/concave down, and identify the location(s) of any inflection points. Make a sign chart for f''
Consider the function f(x)= x3 x2 − 4 Express the domain of the function in interval...
Consider the function f(x)= x3 x2 − 4 Express the domain of the function in interval notation: Find the y-intercept: y= . Find all the x-intercepts (enter your answer as a comma-separated list): x= . On which intervals is the function positive? On which intervals is the function negative? Does f have any symmetries? f is even;f is odd;    f is periodic;None of the above. Find all the asymptotes of f (enter your answers as equations): Vertical asymptote (left): ; Vertical...
(i) Given the function f(x) = x3 − 3x + 2 (a) What are the critical...
(i) Given the function f(x) = x3 − 3x + 2 (a) What are the critical values of f? (b) Find relative maximum/minimum values (if any). (c) Find possible inflection points of f. (d) On which intervals is f concave up or down? (e) Sketch the graph of f. (ii) Find a horizontal and a vertical asymptote of f(x) = 6x . 8x+3
Suppose that f(x)=x−3x^1/3 (A) Find all critical values of f. If there are no critical values,...
Suppose that f(x)=x−3x^1/3 (A) Find all critical values of f. If there are no critical values, enter -1000. If there are more than one, enter them separated by commas. Critical value(s) = (B) Use interval notation to indicate where f(x) is increasing. Note: When using interval notation in WeBWorK, you use INF for ∞∞, -INF for −∞−∞, and U for the union symbol. If there are no values that satisfy the required condition, then enter "{}" without the quotation marks....
Suppose that f(x)=4x2ln(x),x>0.f(x)=4x2ln⁡(x),x>0. (A) List all the critical values of f(x)f(x). Note: If there are no...
Suppose that f(x)=4x2ln(x),x>0.f(x)=4x2ln⁡(x),x>0. (A) List all the critical values of f(x)f(x). Note: If there are no critical values, enter 'NONE'. (B) Use interval notation to indicate where f(x)f(x) is increasing. Note: Use 'INF' for ∞∞, '-INF' for −∞−∞, and use 'U' for the union symbol. If there is no interval, enter 'NONE'. Increasing: (C) Use interval notation to indicate where f(x)f(x) is decreasing. Decreasing: (D) List the xx values of all local maxima of f(x)f(x). If there are no local...
Given the function f(x) = x3 - 3x2 - 9x + 10 Find the intervals where...
Given the function f(x) = x3 - 3x2 - 9x + 10 Find the intervals where it is increasing and decreasing and find the co-ordinates of the relative maximums & minimums. Find the intervals where it is concave up and down and co-ordinates of any inflection points Graph the f(x) 
Consider the function f(x) = −x3 + 4x2 + 7x + 1. (a) Use the first...
Consider the function f(x) = −x3 + 4x2 + 7x + 1. (a) Use the first and second derivative tests to determine the intervals of increase and decrease, the local maxima and minima, the intervals of concavity, and the points of inflection. (b) Use your work in part (a) to compute a suitable table of x-values and corresponding y-values and carefully sketch the graph of the function f(x). In your graph, make sure to indicate any local extrema and any...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT