Using the Gauss-Jordan Method find the inverse of the matrix
[5 -2
6 2]
Using the Gauss-Jordan Method find the inverse of the matrix
[5 -2
6 2]
solution
Your matrix
A1 | A2 | |
---|---|---|
1 | 5 | -2 |
2 | 6 | 2 |
Determinant is not zero, therefore inverse matrix exists
Write the augmented matrix
A1 | A2 | B1 | B2 | |
---|---|---|---|---|
1 | 5 | -2 | 1 | 0 |
2 | 6 | 2 | 0 | 1 |
Make the pivot in the 1st column by dividing the 1st row by 5
A1 | A2 | B1 | B2 | |
---|---|---|---|---|
1 | 1 | -2/5 | 1/5 | 0 |
2 | 6 | 2 | 0 | 1 |
Eliminate the 1st column
A1 | A2 | B1 | B2 | |
---|---|---|---|---|
1 | 1 | -2/5 | 1/5 | 0 |
2 | 0 | 22/5 | -6/5 | 1 |
Make the pivot in the 2nd column by dividing the 2nd row by 22/5
A1 | A2 | B1 | B2 | |
---|---|---|---|---|
1 | 1 | -2/5 | 1/5 | 0 |
2 | 0 | 1 | -3/11 | 5/22 |
Eliminate the 2nd column
A1 | A2 | B1 | B2 | |
---|---|---|---|---|
1 | 1 | 0 | 1/11 | 1/11 |
2 | 0 | 1 | -3/11 | 5/22 |
There is the inverse matrix on the right
A1 | A2 | B1 | B2 | |
---|---|---|---|---|
1 | 1 | 0 | 1/11 | 1/11 |
2 | 0 | 1 | -3/11 | 5/22 |
Result:
B1 | B2 | |
---|---|---|
1 | 1/11 | 1/11 |
2 | -3/11 | 5/22 |
Get Answers For Free
Most questions answered within 1 hours.