Question

Let u = <3, 2, 5> and v = <-2,5,4> Compute the angle between u and...

  1. Let u = <3, 2, 5> and v = <-2,5,4>

  1. Compute the angle between u and v     b) Compute proj v u

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Compute the angle between the vectors u = [2, -1, 1] and and v =...
1. Compute the angle between the vectors u = [2, -1, 1] and and v = [1, -2 , -1] 2. Given that : 1. u=[1, -3] and v=[6, 2], are u and v orthogonal? 3. if u=[1, -3] and v=[k2, k] are orthogonal vectors. What is the value(s) of k? 4. Find the distance between u=[root 3, 2, -2] and v=[0, 3, -3] 5. Normalize the vector u=[root 2, -1, -3]. 6. Given that: v1 = [1, - C/7]...
Let u and v be vectors in 3-space with angle θ between them, 0 ≤ θ...
Let u and v be vectors in 3-space with angle θ between them, 0 ≤ θ ≤ π. Which of the following is the only correct statement? (a) u × v is parallel to v, and |u × v| = |u||v| cos θ. (b) u × v is perpendicular to u, and |u × v| = |u||v| cos θ. (c) u × v is parallel to v, and |u × v| = |u||v|sin θ. (d) u × v is perpendicular...
if |u|=|v|=2 and u.v=1 find the angle between (u+v) and (u-v)
if |u|=|v|=2 and u.v=1 find the angle between (u+v) and (u-v)
Let u = <-2, 2> and v = <3,3>. Compute: a) projv u   b) Write u...
Let u = <-2, 2> and v = <3,3>. Compute: a) projv u   b) Write u = w1 + w2, where w1 is parallel to v and w2 is orthogonal to v.
1. Let ⃗u = −2[4,0,1]+[−1,3,−2] and ⃗v = 3[4,0,1]+5[−1,3,−2]. Let w⃗ = 3⃗u−⃗v. Express w⃗ as...
1. Let ⃗u = −2[4,0,1]+[−1,3,−2] and ⃗v = 3[4,0,1]+5[−1,3,−2]. Let w⃗ = 3⃗u−⃗v. Express w⃗ as a linear combination of the vectors [4, 0, 1] and [−1, 3, −2]. 2. Let ⃗u and ⃗v be two vectors in Rn. Suppose that ||⃗u|| = 3, ||⃗u − ⃗v|| = 5, and that⃗u.⃗v = 1. What is ||⃗v||?. 3. Let ⃗u and ⃗v be two vectors in Rn. Suppose that ||⃗u|| = 5 and that ||⃗v|| = 2. Show that ||⃗u −...
Let u = (−3, 2, 1, 0), v = (4, 7, −3, 2), w = (5,...
Let u = (−3, 2, 1, 0), v = (4, 7, −3, 2), w = (5, −2, 8, 1). Find the vector x that satisfies 2u − ||v||v = 3(w − 2x).
Let g(u, v) = f(u 3 − v 3 , v3 − u 3 ). Prove...
Let g(u, v) = f(u 3 − v 3 , v3 − u 3 ). Prove that v^2 ∂g/∂u − u^2 ∂g/∂v = 0, using the Chain Rule
Let U,V be i.i.d. random variables uniformly distributed in [0,1]. Compute the following quantities: E[|U−V|]= P(U=V)=...
Let U,V be i.i.d. random variables uniformly distributed in [0,1]. Compute the following quantities: E[|U−V|]= P(U=V)= P(U≤V)=
Let V be the vector space of 2 × 2 matrices over R, let <A, B>=...
Let V be the vector space of 2 × 2 matrices over R, let <A, B>= tr(ABT ) be an inner product on V , and let U ⊆ V be the subspace of symmetric 2 × 2 matrices. Compute the orthogonal projection of the matrix A = (1 2 3 4) on U, and compute the minimal distance between A and an element of U. Hint: Use the basis 1 0 0 0   0 0 0 1   0 1...
Let u=〈5,-1,6〉, v=〈0,1,2〉, and w=〈1,3,4〉. Find (a)u×(v×w) (b)(u×v)×w (c)(u×v)×(v×w) d)(v×w)×(u×v).
Let u=〈5,-1,6〉, v=〈0,1,2〉, and w=〈1,3,4〉. Find (a)u×(v×w) (b)(u×v)×w (c)(u×v)×(v×w) d)(v×w)×(u×v).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT