Question

Let u = <-2, 2> and v = <3,3>. Compute: a) projv u   b) Write u...

  1. Let u = <-2, 2> and v = <3,3>. Compute: a) projv u   b) Write u = w1 + w2, where w1 is parallel to v and w2 is orthogonal to v.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let u=[6,2 ], v=[3,3 ], and b=[4,1 ]. Find (x⋅u+y⋅v-b)×2 u, where x,y are scalars.
Let u=[6,2 ], v=[3,3 ], and b=[4,1 ]. Find (x⋅u+y⋅v-b)×2 u, where x,y are scalars.
Let u = <3, 2, 5> and v = <-2,5,4> Compute the angle between u and...
Let u = <3, 2, 5> and v = <-2,5,4> Compute the angle between u and v     b) Compute proj v u
Let V be the vector space of 2 × 2 matrices over R, let <A, B>=...
Let V be the vector space of 2 × 2 matrices over R, let <A, B>= tr(ABT ) be an inner product on V , and let U ⊆ V be the subspace of symmetric 2 × 2 matrices. Compute the orthogonal projection of the matrix A = (1 2 3 4) on U, and compute the minimal distance between A and an element of U. Hint: Use the basis 1 0 0 0   0 0 0 1   0 1...
U= [2,-5,-1] V=[3,2,-3] Find the orthogonal projection of u onto v. Then write u as the...
U= [2,-5,-1] V=[3,2,-3] Find the orthogonal projection of u onto v. Then write u as the sum of two orthogonal vectors, one in span{U} and one orthogonal to U
Let V be a vector space and let v1,v2,...,vn be elements of V . Let W...
Let V be a vector space and let v1,v2,...,vn be elements of V . Let W = span(v1,...,vn). Assume v ∈ V and ˆ v ∈ V but v / ∈ W and ˆ v / ∈ W. Define W1 = span(v1,...,vn,v) and W2 = span(v1,...,vn, ˆ v). Prove that either W1 = W2 or W1 ∩W2 = W.
let x=u+v. y=v find dS, the a vector, and ds^2 for the u,v coordinate system and...
let x=u+v. y=v find dS, the a vector, and ds^2 for the u,v coordinate system and show that it is not an orthogonal system
Let V be an n-dimensional vector space. Let W and W2 be unequal subspaces of V,...
Let V be an n-dimensional vector space. Let W and W2 be unequal subspaces of V, each of dimension n - 1. Prove that V =W1 + W2 and dim(Win W2) = n - 2.
Let U and W be subspaces of V, let u1,...,um be a basis of U, and...
Let U and W be subspaces of V, let u1,...,um be a basis of U, and let w1,....,wn be a basis of W. Show that if u1,...,um,w1,...,wn is a basis of U+W then U+W=U ⊕ W is a direct sum
For parts ( a ) − ( c ) , let u = 〈 2 ,...
For parts ( a ) − ( c ) , let u = 〈 2 , 4 , − 1 〉 and v = 〈 4 , − 2 , 1 〉 . ( a ) Find a unit vector which is orthogonal to both u and v . ( b ) Find the vector projection of u onto v . ( c ) Find the scalar projection of u onto v . For parts ( a ) − (...
1. Compute the angle between the vectors u = [2, -1, 1] and and v =...
1. Compute the angle between the vectors u = [2, -1, 1] and and v = [1, -2 , -1] 2. Given that : 1. u=[1, -3] and v=[6, 2], are u and v orthogonal? 3. if u=[1, -3] and v=[k2, k] are orthogonal vectors. What is the value(s) of k? 4. Find the distance between u=[root 3, 2, -2] and v=[0, 3, -3] 5. Normalize the vector u=[root 2, -1, -3]. 6. Given that: v1 = [1, - C/7]...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT