Let B = {(1, 2), (−1, −1)} and B' = {(−4, 1), (0, 2)} be bases...
Let B = {(1, 2), (−1, −1)} and B' = {(−4, 1), (0, 2)} be bases
for R2, and let A = −1 2 1 0 be the matrix for T: R2 → R2 relative
to B. (a) Find the transition matrix P from B' to B. P =
(b) Use the matrices P and A to find [v]B and [T(v)]B , where
[v]B' = [−3 1]T. [v]B = [T(v)]B =
(c) Find P inverse−1 and A' (the matrix for...
Let B = {(1, 3), (?2, ?2)} and B' = {(?12, 0), (?4, 4)} be bases...
Let B = {(1, 3), (?2, ?2)} and B' = {(?12, 0), (?4, 4)} be bases
for R2, and
let A =
3
2
0
4
be the matrix for T: R2 ? R2 relative to B.
(a) Find the transition matrix P from B' to B. P =
(b) Use the matrices P and A to find [v]B and [T(v)]B, where
[v]B' = [1 ?5]T. [v]B = [T(v)]B =
(c) Find P?1 and A' (the matrix for T relative...
Find the matrix operator T: P3 --> P2 where T [= T(a + bx +
cx^2...
Find the matrix operator T: P3 --> P2 where T [= T(a + bx +
cx^2 + dx^3) = b + 2cx + 3dx^2 with respect to bases B = {1, x,
x^2, x^3} and C = {1, x, 2x^2, -1}.
Let X = ( X1, X2, X3, ,,,, Xn ) is iid,
f(x, a, b) =...
Let X = ( X1, X2, X3, ,,,, Xn ) is iid,
f(x, a, b) = 1/ab * (x/a)^{(1-b)/b} 0 <= x <= a ,,,,, b
< 1
then,
Show the density of the statistic T = X(n) is given by
FX(n) (x) = n/ab * (x/a)^{n/(b-1}} for 0 <= x <=
a ; otherwise zero.
# using the following
P (X(n) < x ) = P (X1 < x, X2 < x, ,,,,,,,,, Xn < x
),
Then assume...
Consider P3 = {a + bx + cx2 +
dx3 |a,b,c,d ∈ R}, the set of...
Consider P3 = {a + bx + cx2 +
dx3 |a,b,c,d ∈ R}, the set of polynomials of degree at
most 3. Let p(x) be an arbitrary element in P3.
(a) Show P3 is a vector space.
(b) Find a basis and the dimension of P3.
(c) Why is the set of polynomials of degree exactly 3 not a
vector space?
(d) Find a basis for the set of polynomials satisfying p′′(x) =
0, a subspace of P3.
(e) Find...
Consider the following two ordered bases of R^2:
B={〈1,−1〉,〈2,−1〉}
C={〈1,1〉,〈1,2〉}.
Find the change of coordinates matrix...
Consider the following two ordered bases of R^2:
B={〈1,−1〉,〈2,−1〉}
C={〈1,1〉,〈1,2〉}.
Find the change of coordinates matrix from the basis B to the
basis C.
PC←B=?
Find the change of coordinates matrix from the basis C to the
basis B.
PB←C=?
Define T:R^2 -> R^2 by T(x,y) = (x+3y, -x+5y) and let B' =
{(3,1)^T, (1,1)^T}. Find...
Define T:R^2 -> R^2 by T(x,y) = (x+3y, -x+5y) and let B' =
{(3,1)^T, (1,1)^T}. Find the matrix A' for T relative to the basis
B'.