Question

Let f(t) be the solution of y' = y(4t-1), y(0) = 4. Use Euler's method with...

Let f(t) be the solution of y' = y(4t-1), y(0) = 4. Use Euler's method with n = 3 to estimate f(1). (Round your answer to three decimal places.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use Euler's method with step size 0.2 to estimate y(3), where y(x) is the solution of...
Use Euler's method with step size 0.2 to estimate y(3), where y(x) is the solution of the initial-value problem y' = 3 − 3xy, y(2) = 0. (Round your answer to four decimal places.) y(3) =
Use Euler's method to approximate y(0.7), where y(x) is the solution of the initial-value problem y''...
Use Euler's method to approximate y(0.7), where y(x) is the solution of the initial-value problem y'' − (2x + 1)y = 1, y(0) = 3, y'(0) = 1. First use one step with h = 0.7. (Round your answer to two decimal places.) y(0.7) = ? Then repeat the calculations using two steps with h = 0.35. (Round your answers to two decimal places.) y(0.35) = ? y(0.7) =?
Use Euler's Method to approximate f(4) given that (df/dt)=9-1t^2 and f(0)=1. Use delta t=1.
Use Euler's Method to approximate f(4) given that (df/dt)=9-1t^2 and f(0)=1. Use delta t=1.
Use Euler's method to approximate y(0.2), where y(x) is the solution of the initial-value problem y''...
Use Euler's method to approximate y(0.2), where y(x) is the solution of the initial-value problem y'' − 4y' + 4y = 0,  y(0) = −3,  y'(0) = 1. Use h = 0.1. Find the analytic solution of the problem, and compare the actual value of y(0.2) with y2. (Round your answers to four decimal places.) y(0.2) ≈     (Euler approximation) y(0.2) = -2.3869 (exact value) I'm looking for the Euler approximation number, thanks.
Given the initial value problem: y'=6√(t+y),  y(0)=1 Use Euler's method with step size h = 0.1 to...
Given the initial value problem: y'=6√(t+y),  y(0)=1 Use Euler's method with step size h = 0.1 to estimate: y(0.1) = y(0.2) =
Use Euler's method to approximate y(1.2), where y(x) is the solution of the initial-value problem x2y''...
Use Euler's method to approximate y(1.2), where y(x) is the solution of the initial-value problem x2y'' − 2xy' + 2y = 0,  y(1) = 9,  y'(1) = 9, where x > 0. Use h = 0.1. Find the analytic solution of the problem, and compare the actual value of y(1.2) with y2. (Round your answers to four decimal places.) y(1.2) ≈     (Euler approximation) y(1.2) =     (exact value)
Use Euler's Method with step size 0.12 to approximate y (0.48) for the solution of the...
Use Euler's Method with step size 0.12 to approximate y (0.48) for the solution of the initial value problem   y ′ = x + y, and y (0)= 1.2 What is y (0.48)? (Keep four decimal places.)
Use Euler's method with step size 0.2 to estimate y(0.6) where y(x) is the solution to...
Use Euler's method with step size 0.2 to estimate y(0.6) where y(x) is the solution to the initial value problem y' = y+x^2, y(0) = 3
Use Euler's method with step size 0.1 to estimate y(0.5), where y(x) is the solution of...
Use Euler's method with step size 0.1 to estimate y(0.5), where y(x) is the solution of the initial-value problem y'=3x+y^2,   y(0)=−1 y(0.5)=
Consider the differential equation y'=-x-y Use Euler's method deltax=.1 to estimate y when x=0.2 for the...
Consider the differential equation y'=-x-y Use Euler's method deltax=.1 to estimate y when x=0.2 for the solution curve satisfying y(-1)=0: Euler's approximation give y(0.2)=?