Question

Consider the differential equation y'=-x-y Use Euler's method deltax=.1 to estimate y when x=0.2 for the...

Consider the differential equation y'=-x-y Use Euler's method deltax=.1 to estimate y when x=0.2 for the solution curve satisfying y(-1)=0: Euler's approximation give y(0.2)=?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use Euler's method with step size 0.2 to estimate y(0.6) where y(x) is the solution to...
Use Euler's method with step size 0.2 to estimate y(0.6) where y(x) is the solution to the initial value problem y' = y+x^2, y(0) = 3
Use Euler's method to approximate y(0.2), where y(x) is the solution of the initial-value problem y''...
Use Euler's method to approximate y(0.2), where y(x) is the solution of the initial-value problem y'' − 4y' + 4y = 0,  y(0) = −3,  y'(0) = 1. Use h = 0.1. Find the analytic solution of the problem, and compare the actual value of y(0.2) with y2. (Round your answers to four decimal places.) y(0.2) ≈     (Euler approximation) y(0.2) = -2.3869 (exact value) I'm looking for the Euler approximation number, thanks.
Use Euler's method with step size 0.2 to estimate y(3), where y(x) is the solution of...
Use Euler's method with step size 0.2 to estimate y(3), where y(x) is the solution of the initial-value problem y' = 3 − 3xy, y(2) = 0. (Round your answer to four decimal places.) y(3) =
a) Let y be the solution of the equation y ′ − [(3x^2*y)/(1+x^3)]=1+x^3 satisfying the condition  y...
a) Let y be the solution of the equation y ′ − [(3x^2*y)/(1+x^3)]=1+x^3 satisfying the condition  y ( 0 ) = 1. Find y ( 1 ). b) Let y be the solution of the equation y ′ = 4 − 2 x y satisfying the condition y ( 0 ) = 0. Use Euler's method with the horizontal step size  h = 1/2 to find an approximation to the value of the function y at x = 1. c) Let y...
Consider the differential equation y' = x − y + 1: (a) Verify that y =...
Consider the differential equation y' = x − y + 1: (a) Verify that y = x + e^(1−x) is a solution to the above differential equation satisfying y(1) = 2; (b) Is the solution through (1, 2) unique? Justify your answer in a few sentences; (c) Is this differential equation separable? Find the general solution of y' = x − y + 1.
Consider the following differential equation: dydx=x+y With initial condition: y = 1 when x = 0...
Consider the following differential equation: dydx=x+y With initial condition: y = 1 when x = 0 Using the Euler forward method, solve this differential equation for the range x = 0 to x = 0.5 in increments (step) of 0.1 Check that the theoretical solution is y(x) = - x -1 , Find the error between the theoretical solution and the solution given by Euler method at x = 0.1 and x = 0.5 , correct to three decimal places
Apply Euler's method twice to approximate the solution of the equation y'=y-x-1, y(0)=1 at x=0.5. Use...
Apply Euler's method twice to approximate the solution of the equation y'=y-x-1, y(0)=1 at x=0.5. Use h=0.1. a. y(0.5)=1.089 b. y(0.5)=0.579 c. y(0.5)=1.534 d. y(0.5)=0.889
Use Euler's method with step size 0.1 to estimate y(0.5), where y(x) is the solution of...
Use Euler's method with step size 0.1 to estimate y(0.5), where y(x) is the solution of the initial-value problem y'=3x+y^2,   y(0)=−1 y(0.5)=
a)Program a calculator or computer to use Euler's method to compute y(1), where y(x) is the...
a)Program a calculator or computer to use Euler's method to compute y(1), where y(x) is the solution of the given initial-value problem. (Give all answers to four decimal places.) dy dx + 3x2y = 9x2, y(0) = 4 h = 1     y(1) = h = 0.1     y(1) = h = 0.01     y(1) = h = 0.001     y(1) = (b) Verify that y = 3 + e−x3 is the exact solution of the differential equation. y = 3 + e−x3      ⇒     y'...
Use Euler's method with step size 0.4 to estimate y ( 0.8 ) , where y...
Use Euler's method with step size 0.4 to estimate y ( 0.8 ) , where y ( x ) is the solution of the initial-value problem y' = 4x + y^2 , y ( 0 ) = 0 . y ( 0.8 ) =_____________________
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT