Let's assume that we have a stock that is priced at $47 a share. There is a call that expires in 5 months that has a strike price of $44.50. The stock has a standard deviation of .35 and the risk free rate is 2.25%.
Let's find the price of this call using the BSOPM.
What is the N of d2?
A. |
.3688 |
|
B. |
.6541 |
|
C. |
.2731 |
|
D. |
.5677 |
As per Black Scholes Model | ||||||
Value of call option = (S)*N(d1)-N(d2)*K*e^(-r*t) | ||||||
Where | ||||||
S = Current price = | 47 | |||||
t = time to expiry = | 0.416667 | |||||
K = Strike price = | 44.5 | |||||
r = Risk free rate = | 2.3% | |||||
q = Dividend Yield = | 0% | |||||
σ = Std dev = | 35% | |||||
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2) | ||||||
d1 = (ln(47/44.5)+(0.0225-0+0.35^2/2)*0.416667)/(0.35*0.416667^(1/2)) | ||||||
d1 = 0.396391 | ||||||
d2 = d1-σ*t^(1/2) | ||||||
d2 =0.396391-0.35*0.416667^(1/2) | ||||||
d2 = 0.170467 | ||||||
N(d1) = Cumulative standard normal dist. of d1 | ||||||
N(d1) =0.654092 | ||||||
N(d2) = Cumulative standard normal dist. of d2 | ||||||
N(d2) =0.5677 |
Get Answers For Free
Most questions answered within 1 hours.