Enter your answers as a percent rounded to 2 decimal
places, e.g., 32.16.)
Stated Rate (APR) |
Number of Times Compounded |
Effective Rate (EAR) |
||||
% | Semiannually | 11 | % | |||
Monthly | 11.9 | % | ||||
Weekly | 9.6 | % | ||||
Infinite | 13.3 | % | ||||
1.EAR=(1+APR/m)^m-1
where m=compounding periods
0.11=(1+APR/2)^2-1
(1+0.11)=(1+APR/2)^2
(1.11)^(1/2)=(1+APR/2)
APR=[(1.11)^(1/2)-1]*2
=10.71%(Approx).
2.EAR=(1+APR/m)^m-1
where m=compounding periods
0.119=(1+APR/12)^12-1
(1+0.119)=(1+APR/12)^12
(1.119)^(1/12)=(1+APR/12)
APR=[(1.119)^(1/12)-1]*12
=11.30%(Approx).
3.EAR=(1+APR/m)^m-1
where m=compounding periods
0.096=(1+APR/52)^52-1
(1+0.096)=(1+APR/52)^52
(1.096)^(1/52)=(1+APR/52)
APR=[(1.096)^(1/52)-1]*52
=9.17%(Approx).
4.EAR=(e)^APR-1
where e=2.71828
0.133=(2.71828)^APR-1
1.133=2.71828^APR
Taking log on both sides;
log 1.133=APR*log 2.71828
APR=log 1.133/log 2.71828
=12.49%(Approx).
Get Answers For Free
Most questions answered within 1 hours.