Find the APR, or stated rate, in each of the following cases.
(Do not round intermediate calculations and enter your
answers as a percent rounded to 2 decimal places, e.g., 32.16. Use
365 days in a year.)
Stated Rate (APR) | Number of
Times Compounded |
Effective Rate (EAR) | |||
% | Semiannually | 13.50 | % | ||
% | Monthly | 9.50 | |||
% | Weekly | 11.50 | |||
% | Daily | 9.50 |
EAR=(1+APR/m)^m-1
where m=compounding periods
1.
0.135=(1+APR/2)^2-1
(0.135+1)=(1+APR/2)^2
(1.135)^(1/2)=(1+APR/2)
APR=[(1.135)^(1/2)-1]*2
=13.07%(Approx).
2.
0.095=(1+APR/12)^12-1
(0.095+1)=(1+APR/12)^12
(1.095)^(1/12)=(1+APR/12)
APR=[(1.095)^(1/12)-1]*12
=9.11%(Approx).
3.
0.115=(1+APR/52)^52-1
(0.115+1)=(1+APR/52)^52
(1.115)^(1/52)=(1+APR/52)
APR=[(1.115)^(1/52)-1]*52
=10.90%(Approx).
4.
0.095=(1+APR/365)^365-1
(0.095+1)=(1+APR/365)^365
(1.095)^(1/365)=(1+APR/365)
APR=[(1.095)^(1/365)-1]*365
=9.08%(Approx).
Get Answers For Free
Most questions answered within 1 hours.