Find the APR, or stated rate, in each of the following cases (Do not round intermediate calculations and enter your answers as a percent rounded to 2 decimal places, e.g., 32.16.):
Stated Rate (APR) | # of times Compounded | Efective rate (EAR) |
semiannual | 11.3% | |
monthly | 12.2% | |
weekly | 9.9% | |
infinite | 13.6% |
a.EAR=[(1+APR/m)^m]-1
where m=compounding periods
0.113=(1+APR/2)^2-1
(1+0.113)=(1+APR/2)^2
APR=[(1+0.113)^(1/2)-1]*2
=11%(Approx).
b.EAR=[(1+APR/m)^m]-1
where m=compounding periods
0.122=(1+APR/12)^12-1
(1+0.122)=(1+APR/12)^12
APR=[(1+0.122)^(1/12)-1]*12
=11.57%(Approx).
c.EAR=[(1+APR/m)^m]-1
where m=compounding periods
0.099=(1+APR/52)^52-1
(1+0.099)=(1+APR/52)^52
APR=[(1+0.099)^(1/52)-1]*52
=9.45%(Approx).
d.
EAR=(e)^APR-1
where e=2.71828
0.136=(2.71828)^APR-1
1.136=2.71828^APR
Taking log on both sides;
log 1.136=APR*log 2.71828
APR=log 1.136/log 2.71828
=12.75%(Approx).
Get Answers For Free
Most questions answered within 1 hours.