Question

Consider a system defined by the input-output relationship given below: y(t) = x(t)x(t-2) a) Is the...

Consider a system defined by the input-output relationship given below:

y(t) = x(t)x(t-2)

a) Is the system memoryless? Why?

b) Is the system stable? Why?

c) Is the system causal? Why?

d) Is the system invertible? Show why?

e) Find the impulse response of the system.

PLEASE ANSWER ALL QUESTIONS!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given a input x(t) output y(t) relation as y(t) = x(0.5+t) + e^( - | x(0.5-t)...
Given a input x(t) output y(t) relation as y(t) = x(0.5+t) + e^( - | x(0.5-t) | ). Determine the system is (a) Memoryless (b) Time invariant (c) Linear (d) Causal (e) stable.
Find the pole and zero values for the system whose input-output relation is given below and...
Find the pole and zero values for the system whose input-output relation is given below and show them in the z plane. Also calculate the impulse response of this system. y[n-1] - (10/3)y[n] + y[n+1] = x[n]
6. Consider a causal linear system whose (zero-state) response to an input signal, f(t) = e...
6. Consider a causal linear system whose (zero-state) response to an input signal, f(t) = e −3tu(t), is y(t) = (−e −t + 4e −2t − 3e −3t )u(t). ( a) Find the transfer function H(s) of the system. (b) Write the differential equation that describes the system. (c) Plot the pole-zero diagram of system. Is the system stable? (d) Plot the frequency response of the system, |H(w)|. (e) Whats the systems zero-state response to another input signal, f1(t) =...
A continuous-time system, with time t in seconds (s), input f(t), and output y(t), is specified...
A continuous-time system, with time t in seconds (s), input f(t), and output y(t), is specified by the equations: y(t) = f(sin(t)) y(t) = f(cos(t)) a) are these systems causal? Justify your answer. b) are these systems linear? Clearly show and explain your work
(d) A test on unknown LTI system is conducted by given an impulse as the input....
(d) A test on unknown LTI system is conducted by given an impulse as the input. The output impulse response from this test is given by: ℎ[?]=[?[?−1]−?[?−4]]?[?] A signal ?[?]=4?[?−1]+14[?[?]−?[?−3]] will be the new input to that system. Find the new output if the input-output relationship for a system given as ?[?]=ℎ[?]∗?[?]. [10 marks]
Solve this signal problem. Suppose the output y[n] of a DT LTI system with input x[n]...
Solve this signal problem. Suppose the output y[n] of a DT LTI system with input x[n] is y[n-1] - 10/3y[n] + y[n+1] = x[n] The system is stable and the impulse response of h[n] = A1*(B1)^n*C1 + A2*(B2)^n*C2 is then, What is A1? What is B1? What is C1? What is A2? What is B2? What is C2?
Consider an arbitrary linear system with input x[n] and output y[n]. Show that if x[n] =...
Consider an arbitrary linear system with input x[n] and output y[n]. Show that if x[n] = 0 for all n, then y[n] must also be zero for all n.
For the LTI system described by the following system functions, determine (i) the impulse response (ii)...
For the LTI system described by the following system functions, determine (i) the impulse response (ii) the difference equation representation (iii) the pole-zero plot, and (iv) the steady state output y(n) if the input is x[n] = 3cos(πn/3)u[n]. a. H(z) = (z+1)/(z-0.5), causal system (Hint: you need to express H(z) in z-1 to find the difference equation ) b. H(z) = (1 + z-1+ z-2)/(1-1.7z-1+0.6z-2), stable system c. Is the system given in (a) stable? Is the system given in...
An LTI system has an impulse answer of h[n] = a^(n)H[n], H[n] is the Heaviside step...
An LTI system has an impulse answer of h[n] = a^(n)H[n], H[n] is the Heaviside step function. Obtain the output y[n] from the system when the input is x[n]=H[n]. 2. Consider the discrete system defined by> y[n] - ay[n-1] =x[n] Find the output when the input is x[n] = Kb^(n)H[n], and y[-1]=y_(-1)\ Find the output when the input is x[n] = K ẟ [n], and y[-1]=a Find the impulse response when the system is initially at rest. Find the Heaviside...
Consider the transformation T: R2 -> R3 defined by T(x,y) = (x-y,x+y,x+2y) Answer the Following a)Find...
Consider the transformation T: R2 -> R3 defined by T(x,y) = (x-y,x+y,x+2y) Answer the Following a)Find the Standard Matrix A for the linear transformation b)Find T([1 -2]) c) determine if c = [0 is in the range of the transformation T 2 3] Please explain as much as possible this is a test question that I got no points on. Now studying for the final and trying to understand past test questions.