Question

Find the pole and zero values for the system whose input-output relation is given below and...

Find the pole and zero values for the system whose input-output relation is given below and show them in the z plane. Also calculate the impulse response of this system.

y[n-1] - (10/3)y[n] + y[n+1] = x[n]

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a system defined by the input-output relationship given below: y(t) = x(t)x(t-2) a) Is the...
Consider a system defined by the input-output relationship given below: y(t) = x(t)x(t-2) a) Is the system memoryless? Why? b) Is the system stable? Why? c) Is the system causal? Why? d) Is the system invertible? Show why? e) Find the impulse response of the system. PLEASE ANSWER ALL QUESTIONS!
For the LTI system described by the following system functions, determine (i) the impulse response (ii)...
For the LTI system described by the following system functions, determine (i) the impulse response (ii) the difference equation representation (iii) the pole-zero plot, and (iv) the steady state output y(n) if the input is x[n] = 3cos(πn/3)u[n]. a. H(z) = (z+1)/(z-0.5), causal system (Hint: you need to express H(z) in z-1 to find the difference equation ) b. H(z) = (1 + z-1+ z-2)/(1-1.7z-1+0.6z-2), stable system c. Is the system given in (a) stable? Is the system given in...
Consider a causal LTI system described by the difference equation: y[n] = 0.5 y[n-1] + x[n]...
Consider a causal LTI system described by the difference equation: y[n] = 0.5 y[n-1] + x[n] – x[n-1] (a) Determine the system function H(z) and plot a pole-zero pattern in the complex z-plane. (b) Find the system response using partial fraction expansion when the input is x[n] = 2u[n]. Plot the result.
6. Consider a causal linear system whose (zero-state) response to an input signal, f(t) = e...
6. Consider a causal linear system whose (zero-state) response to an input signal, f(t) = e −3tu(t), is y(t) = (−e −t + 4e −2t − 3e −3t )u(t). ( a) Find the transfer function H(s) of the system. (b) Write the differential equation that describes the system. (c) Plot the pole-zero diagram of system. Is the system stable? (d) Plot the frequency response of the system, |H(w)|. (e) Whats the systems zero-state response to another input signal, f1(t) =...
Solve this signal problem. Suppose the output y[n] of a DT LTI system with input x[n]...
Solve this signal problem. Suppose the output y[n] of a DT LTI system with input x[n] is y[n-1] - 10/3y[n] + y[n+1] = x[n] The system is stable and the impulse response of h[n] = A1*(B1)^n*C1 + A2*(B2)^n*C2 is then, What is A1? What is B1? What is C1? What is A2? What is B2? What is C2?
Consider an arbitrary linear system with input x[n] and output y[n]. Show that if x[n] =...
Consider an arbitrary linear system with input x[n] and output y[n]. Show that if x[n] = 0 for all n, then y[n] must also be zero for all n.
An LTI system has an impulse answer of h[n] = a^(n)H[n], H[n] is the Heaviside step...
An LTI system has an impulse answer of h[n] = a^(n)H[n], H[n] is the Heaviside step function. Obtain the output y[n] from the system when the input is x[n]=H[n]. 2. Consider the discrete system defined by> y[n] - ay[n-1] =x[n] Find the output when the input is x[n] = Kb^(n)H[n], and y[-1]=y_(-1)\ Find the output when the input is x[n] = K ẟ [n], and y[-1]=a Find the impulse response when the system is initially at rest. Find the Heaviside...
(C++) Write a program whose input is two characters and a string, and whose output indicates...
(C++) Write a program whose input is two characters and a string, and whose output indicates the number of times each character appears in the string. Ex: If the input is: n M Monday the output is: 1 1 Ex: If the input is: z y Today is Monday the output is: 0 2 Ex: If the input is: n y It's a sunny day the output is: 2 2 Case matters. Ex: If the input is: n N Nobody...
For the system given by the difference equation below: Y(n) – (3/2).Y(n-1) – Y(n-2) = -(5/2)....
For the system given by the difference equation below: Y(n) – (3/2).Y(n-1) – Y(n-2) = -(5/2). X(n-1) Find the transfer function H(z). You will need to do this manually. Find the poles and zeros of H(z). You can do this manually or use MATLAB. Plot the poles and zeros in MATLAB Is the system stable? Plot the impulse response of the system using MATLAB Plot the Step Response of the system using MATLAB Plot the frequency response of the system...
Given an input signal x[n], and the impulse response h[n], compute the output signal. x[n] =...
Given an input signal x[n], and the impulse response h[n], compute the output signal. x[n] = a^n * u[1-n]          for |a| > 1 h[n] = u[2-n]
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT