Question

Two firms compete in quantities. The firms are perfectly symmetric, which makes the math easy! The...

Two firms compete in quantities. The firms are perfectly symmetric, which makes the math easy! The inverse demand is given by P= 80 − 0.5Q, where Q is total market demand. Each firm has total costs c(q) = 20q.

a) Find the Cournot quantities, price, and profit of each firm.

b) Now calculate the quantities, price and profit of each firm if the two firms equally split the monopoly quantity (i.e. if they collude).

c) Now calculate the quantities, price and profit of each firm i firm 1 cheats on the collusive agreement while firm 2 produces its agreed quantity.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following market: Two firms compete in quantities, i.e., they are Cournot competitors. The firms...
Consider the following market: Two firms compete in quantities, i.e., they are Cournot competitors. The firms produce at constant marginal costs equal to 20. The inverse demand curve in the market is given by P(q) = 260 − q. a. Find the equilibrium quantities under Cournot competition as well as the quantity that a monopolist would produce. Calculate the equilibrium profits in Cournot duopoly and the monopoly profits. Suppose that the firms compete in this market for an infinite number...
The market demand for a good is represented by P = 400 ?20Q. Firms are symmetric...
The market demand for a good is represented by P = 400 ?20Q. Firms are symmetric with cost functions C = 30q. Assume the firms compete in a Cournot Oligopoly (i.e., simultaneous choices of quantity). Cooperation: Consider the same demand and cost functions from above, focusing on the case where there are two firms in the market. Suppose the two duopolists agree to a cartel in which they each produce half of the monopoly output. Show that this cannot be...
Consider two firms, Firm A and Firm B, who compete as duopolists. Each firm produces an...
Consider two firms, Firm A and Firm B, who compete as duopolists. Each firm produces an identical product. The total inverse demand curve for the industry is ? = 250 − (?? + ?? ). Firm A has a total cost curve ?? (?? ) = 100 + ?? 2 . Firm B has a total cost curve ?? (?? ) = 100 + 2??. a. Suppose for now, only Firm A exists (?? = 0). What is the Monopoly...
Q) There are two firms in the Waves, Muscat, Cyber Space pvt. (CS) and IT Solutions...
Q) There are two firms in the Waves, Muscat, Cyber Space pvt. (CS) and IT Solutions (ITS). They collude to share the market equally. They jointly set a monopoly price and split the quantity demanded at that price. Here are their options:               i.    They continue to cooperate (no cheating) and make $15 million each in profits.             ii.    One firm cheats and the other does not. The firm that cheats makes a profit                     of $20 million whereas the...
Two firms compete with quantities as in Cournot. Each firm has a marginal cost of $12....
Two firms compete with quantities as in Cournot. Each firm has a marginal cost of $12. The industry demand is P=48-2Q. How much output will each firm produce individually?
Consider a Cournot model with two firms, firm 1 and firm 2, producing quantities q1 and...
Consider a Cournot model with two firms, firm 1 and firm 2, producing quantities q1 and q2, respectively. Suppose the inverse market demand function is: P = 450 – Q where Q denotes the total quantity supplied on the market. Also, each firm i = 1,2 has a total cost function c(qi) = 30qi. a) What is the Nash equilibrium of this Cournot game ? What is the market prices ? Compute each firm’s profit and the industry profit. b)...
Two firms compete to sell a homogenous good in a market characterized by a demand function...
Two firms compete to sell a homogenous good in a market characterized by a demand function Q = 250 – 1/4P. Each firm has the same cost function at C(Q) = $200Q. Use this information to compare the output levels and profits in settings characterized by Cournot, Stackelberg, Bertrand, and Collusive behavior.
Consider two identical firms (no. 1 and no. 2) that face a linear market demand curve....
Consider two identical firms (no. 1 and no. 2) that face a linear market demand curve. Each firm has a marginal cost of zero and the two firms together face demand: P = 50 - 0.5Q, where Q = Q1 + Q2. a. Find the Cournot equilibrium Q and P for each firm. Calculate the results rounded to the second digit after the decimal point b. Find the equilibrium Q and P for each firm assuming that the firms collude...
Two identical firms compete as a Cournot duopoly. The inverse market demand they face is P...
Two identical firms compete as a Cournot duopoly. The inverse market demand they face is P = 128 - 4Q. The cost function for each firm is C(Q) = 8Q. The price charged in this market will be a. $32. b. $48. c. $12. d. $56.
Assume that you observe two firms operating in a Bertrand oligopoly. The inverse demand function for...
Assume that you observe two firms operating in a Bertrand oligopoly. The inverse demand function for the market is P = 200 – 2Q and each firm has the same cost function of C(Q) = 20Q. What is the level of production for each firm, market price, and profit of each firm? What would happen if both firms merge to form a single monopoly with a cost function of C(Q) = 20Q?