Question

Two identical firms compete as a Cournot duopoly. The inverse market demand they face is P...

Two identical firms compete as a Cournot duopoly. The inverse market demand they face is P = 128 - 4Q. The cost function for each firm is C(Q) = 8Q. The price charged in this market will be

a. $32.

b. $48.

c. $12.

d. $56.

Homework Answers

Answer #1

b. $48.

(Q = Q1 + Q2 where Q1 is firm 1's output and Q2 ia firm 2's output.
So, P = 128 - 4(Q1+Q2) = 128 - 4Q1 - 4Q2
MC = dC/dQ = 8

Each firm maximizes profit where MR = MC.

Firm 1: TR1 = P*Q1 = (128 - 4Q1 - 4Q2)Q1 = 128Q1 - 4Q12 - 4Q2Q1
So, MR1 = d(TR1)/dQ1 = 128 - 2(4Q1) - 4Q2 = 128 - 8Q1 - 4Q2
So, MR1 = MC gives,
128 - 8Q1 - 4Q2 = 8
So, 8Q1 = 128 - 4Q2 - 8
So, Q1 = (120/8) - (4Q2/8)
So, Q1 = 15 - 0.5Q2

Using symmetry, Q2 = 15 - 0.5Q1 = 15 - 0.5(15 - 0.5Q2) = 15 - 7.5 + 0.25Q2
So, Q2 - 0.25Q2 = 0.75Q2 = 7.5
So, Q2 = 7.5/.75 = 10
So, Q1 = 10

P = 128 - 4(Q1+Q2) = 128 - 4(10+10) = 128 - 80 = 48)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two identical firms compete as a Cournet duopoly. The inverse market demand they face is P...
Two identical firms compete as a Cournet duopoly. The inverse market demand they face is P = 15 – 2Q. The cost function for each firm is C(q) = 6Q. Each firm will earn equilibrium profits of
Two firms compete as a Stackelberg duopoly. Firm 1 is the market leader. The inverse market...
Two firms compete as a Stackelberg duopoly. Firm 1 is the market leader. The inverse market demand they face is P = 62 - 2Q, where Q=Q1+Q2. The cost function for each firm is C(Q) = 6Q. Given that firm 2's reaction function is given by Q2 = 14 - 0.5Q1, the optimal outputs of the two firms are: a. QL = 9.33; QF = 9.33. b. QL = 14; QF = 7. c. QL = 6; QF = 3....
Two firms compete in a market with inverse demand P = 120 − Q. Firm 1...
Two firms compete in a market with inverse demand P = 120 − Q. Firm 1 has cost function C(q1) = 20q1 and Firm 2 has cost function C(q2) = 10q2. Solve for the Bertrand equilibrium in which firms choose price simultaneously.
1) Two firms, a and b, in a Cournot oligopoly face the inverse demand function p...
1) Two firms, a and b, in a Cournot oligopoly face the inverse demand function p = 300 – Q. Their cost function is c (qi) = 25 + 50qi for i = a, b. Calculate the profit maximizing price output combination. (3)
Consider a duopoly with two firms with the cost functions: Firm 1: C1(q1)=5q1 Firm 2: C2(q2)=5q2...
Consider a duopoly with two firms with the cost functions: Firm 1: C1(q1)=5q1 Firm 2: C2(q2)=5q2 The firms compete in a market with inverse demand p = 300 - 8Q where Q=q1+q2. The firms compete in a Cournot fashion by choosing output simultaneously.   What is the Nash-Cournot equilibrium output of firm 1? Round to nearest .1
Two firms sell identical products and compete as Cournot (price-setting) competitors in a market with a...
Two firms sell identical products and compete as Cournot (price-setting) competitors in a market with a demand of p = 150 - Q. Each firm has a constant marginal and average cost of $3 per unit of output. Find the quantity each firm will produce and the price in equilibrium.
Two firms, a and b, compete in a market to sell homogeneous products with inverse demand...
Two firms, a and b, compete in a market to sell homogeneous products with inverse demand function P = 400 – 2Q where Q = Qa + Qb. Firm a has the cost function Ca = 100 + 15Qa and firm b has the cost function Cb = 100 + 15Qb. Use this information to compare the output levels, price, and profits in settings characterized by the following markets: a, Cournot b, Stackelberg c, Bertrand d, Collusion
Two firms, a and b, compete in a market to sell homogeneous products with inverse demand...
Two firms, a and b, compete in a market to sell homogeneous products with inverse demand function P = 400 – 2Q where Q = Qa + Qb. Firm a has the cost function Ca = 100 + 15Qa and firm b has the cost function Cb = 100 + 15Qb. Use this information to compare the output levels, price and profits in settings characterized by the following markets: Cournot Stackelberg Bertrand Collusion
Consider a Cournot duopoly operating in a market with inverse demand P(Q) = a - Q,...
Consider a Cournot duopoly operating in a market with inverse demand P(Q) = a - Q, where Q = q1 + q2 is the aggregate quantity on the market. Both firms have total costs ci(qi) = cqi, but demand is uncertain: it is High (a = aH) with probability theta and low (a= aL) with probability 1 - theta. Furthermore, information is asymmetric: firm 1 knows whether demand is high or low, but firm 2 does not. All this is...
Four firms compete a la Cournot in a market where inverse demand is given by P...
Four firms compete a la Cournot in a market where inverse demand is given by P = 90 − 2Q. Suppose 3 high-cost firms have constant marginal cost of 20, while one low-cost firm has marginal cost of 10. Find the Nash equilibrium output for each firm where the high-cost firms each produce the same level of output.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT