Question

Using a standard Solow growth model with population growth, describe the evolutions of the real wage,...

Using a standard Solow growth model with population growth, describe the evolutions of the real wage, the real rental rate of the physical capital, and the aggregate physical capital real income when an economy accumulates more physical capital per worker.

Homework Answers

Answer #1

Answer :

Given that,

Using a standard Solow growth model with population growth, describe the evolutions of the real wage, the real rental rate of the physical capital, and the aggregate physical capital real income when an economy accumulates more physical capital per worker.

  

The income - expendoture identify holds as an equilibrium condition

Consumer's budget constraint

Therefore in equilibrium

The capital accumalation equation becomes :

The capital accumlation equation in per workers times is given through the following equation.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In the Solow growth model of an economy with population growth and technological progress, the steady-state...
In the Solow growth model of an economy with population growth and technological progress, the steady-state growth rate in output per worker is equal to: (a) zero (b) the rate of technological progress g. (c) the growth rate of population n plus the rate of technological progress g. (d) the rate of technological progress g minus the growth rate of population n. In the Solow growth model of an economy with population growth and technological progress, the steady-state growth rate...
In the Solow growth model with population growth, but no technological progress, if in the steady...
In the Solow growth model with population growth, but no technological progress, if in the steady state the marginal product of capital equals 0.10, the depreciation rate equals 0.05, and the rate of population growth equals 0.03, then the capital per worker ratio is below/above/equal to the Golden Rule level. We can optimize per-capita income by increasing/decreasing/leaving alone the savings rate. What governmental policy could achieve this strategy?
In the Solow growth model with population growth but no technological progress, if in the steady...
In the Solow growth model with population growth but no technological progress, if in the steady state the marginal product of capital equals 0.10, the depreciation rate equals 0.05, and the rate of population growth equals 0.03, then the capital per worker ratio ____ the Golden Rule level. A) is above B) is below C) is equal to D) will move to
In the steady state of the Solow model, higher population growth leads to a  _________ level of...
In the steady state of the Solow model, higher population growth leads to a  _________ level of income per worker and  _________ growth in total income.
1- Which of the choices below is false concerning capital deepening in the Solow Model? A...
1- Which of the choices below is false concerning capital deepening in the Solow Model? A country that has a higher savings/investment rate ceteris paribus will accumulate more capital per worker. The change in the capital/labor ratio with respect to time is positive and the ratio itself increases A country with more capital per worker than before will produce more output per worker. In short, the worker is more productive. A greater amount of capital invested per worker and positive...
Answer the following questions using the basic Solow growth model, without population growth or technological progress....
Answer the following questions using the basic Solow growth model, without population growth or technological progress. (a) Draw a diagram with per worker output, y, consumption, c, saving, s and investment, i, on the vertical axis and capital per worker, k, on the horizontal condition. On this diagram, clearly indicate steady-state values for c, i, and y. Briefly outline the condition that holds in the steady- state (i.e. what is the relationship between investment and the depreciation of capital?). (b)...
Question #1: The Basic Solow Model Consider an economy in which the population grows at the...
Question #1: The Basic Solow Model Consider an economy in which the population grows at the rate of 1% per year. The per worker production function is y = k6, where y is output per worker and k is capital per worker. The depreciation rate of capital is 14% per year. Assume that households consume 90% of their income and save the remaining 10% of their income. (a) Calculate the following steady-state values of (i) capital per worker (ii) output...
Use the Solow model to solve. Suppose, you are the chief economic advisor to a small...
Use the Solow model to solve. Suppose, you are the chief economic advisor to a small African country with an aggregate per capita production function of  y=2k1/2. Population grows at a rate of 1%. The savings rate is 12%, and the rate of depreciation is 5%. (a) At the steady-state level of output, what is the numerical value of consumption? Identify the amount of consumption in your graph in part a. Show your work. (b) Say that population growth decreases in...
1) In the steady state of the Solow model with technological progress, which of the following...
1) In the steady state of the Solow model with technological progress, which of the following variables is not constant? (a) capital per effective worker (b) the real rental price of capital (c) the real wage (d) the capital-output ratio 2) The U.S. economy has more/less capital than at the Golden Rule steady state, suggesting that it may be desirable to increase/decrease the rate of saving. 3) The purpose of  exogenous/endogenous growth theory is to explain technological progress. Some of these...
Consider a version of the Solow model where population grows at the constant rate ? >...
Consider a version of the Solow model where population grows at the constant rate ? > 0 and labour efficiency grows at rate ?. Capital depreciates at rate ? each period and a fraction ? of income is invested in physical capital every period. Assume that the production function is given by: ?t = ?ta(?t?t )1-a Where ??(0,1), ?t is output, ?t is capital, ?t is labour and ?t is labour efficiency. a. Show that the production function exhibits constant...